Training Deep Convolutional Neural Networks with Resistive Cross-Point Devices
In a previous work we have detailed the requirements for obtaining maximal deep learning performance benefit by implementing fully connected deep neural networks (DNN) in the form of arrays of resistive devices. Here we extend the concept of Resistive Processing Unit (RPU) devices to convolutional n...
Main Authors: | Tayfun Gokmen, Murat Onen, Wilfried Haensch |
---|---|
פורמט: | Article |
שפה: | English |
יצא לאור: |
Frontiers Media S.A.
2017-10-01
|
סדרה: | Frontiers in Neuroscience |
נושאים: | |
גישה מקוונת: | http://journal.frontiersin.org/article/10.3389/fnins.2017.00538/full |
פריטים דומים
-
Training LSTM Networks With Resistive Cross-Point Devices
מאת: Tayfun Gokmen, et al.
יצא לאור: (2018-10-01) -
MR-PIPA: An Integrated Multilevel RRAM (HfO<sub><italic>x</italic></sub>)-Based Processing-In-Pixel Accelerator
מאת: Minhaz Abedin, et al.
יצא לאור: (2022-01-01) -
Reliable and Energy-Efficient Diabetic Retinopathy Screening Using Memristor-Based Neural Networks
מאת: Sumit Diware, et al.
יצא לאור: (2024-01-01) -
Design implementations of ternary logic systems: A critical review
מאת: Furqan Zahoor, et al.
יצא לאור: (2024-09-01) -
Accurate Inference With Inaccurate RRAM Devices: A Joint Algorithm-Design Solution
מאת: Gouranga Charan, et al.
יצא לאור: (2020-01-01)