Time evolution of entanglement for holographic steady state formation

Abstract Within gauge/gravity duality, we consider the local quench-like time evolution obtained by joining two 1+1-dimensional heat baths at different temperatures at time t = 0. A steady state forms and expands in space. For the 2+1-dimensional gravity dual, we find that the “shockwaves” expanding...

Full description

Bibliographic Details
Main Authors: Johanna Erdmenger, Daniel Fernández, Mario Flory, Eugenio Megías, Ann-Kathrin Straub, Piotr Witkowski
Format: Article
Language:English
Published: SpringerOpen 2017-10-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP10(2017)034
Description
Summary:Abstract Within gauge/gravity duality, we consider the local quench-like time evolution obtained by joining two 1+1-dimensional heat baths at different temperatures at time t = 0. A steady state forms and expands in space. For the 2+1-dimensional gravity dual, we find that the “shockwaves” expanding the steady-state region are of spacelike nature in the bulk despite being null at the boundary. However, they do not transport information. Moreover, by adapting the time-dependent Hubeny-Rangamani-Takayanagi prescription, we holographically calculate the entanglement entropy and also the mutual information for different entangling regions. For general temperatures, we find that the entanglement entropy increase rate satisfies the same bound as in the ‘entanglement tsunami’ setups. For small temperatures of the two baths, we derive an analytical formula for the time dependence of the entanglement entropy. This replaces the entanglement tsunami-like behaviour seen for high temperatures. Finally, we check that strong subadditivity holds in this time-dependent system, as well as further more general entanglement inequalities for five or more regions recently derived for the static case.
ISSN:1029-8479