Neural mechanisms for the localization of unexpected external motion

Abstract To localize objects during active sensing, animals must differentiate stimuli caused by volitional movement from real-world object motion. To determine a neural basis for this ability, we examined the mouse superior colliculus (SC), which contains multiple egocentric maps of sensorimotor sp...

Full description

Bibliographic Details
Main Authors: Suma Chinta, Scott R. Pluta
Format: Article
Language:English
Published: Nature Portfolio 2023-09-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-023-41755-z
Description
Summary:Abstract To localize objects during active sensing, animals must differentiate stimuli caused by volitional movement from real-world object motion. To determine a neural basis for this ability, we examined the mouse superior colliculus (SC), which contains multiple egocentric maps of sensorimotor space. By placing mice in a whisker-guided virtual reality, we discovered a rapidly adapting tactile response that transiently emerged during externally generated gains in whisker contact. Responses to self-generated touch that matched self-generated history were significantly attenuated, revealing that transient response magnitude is controlled by sensorimotor predictions. The magnitude of the transient response gradually decreased with repetitions in external motion, revealing a slow habituation based on external history. The direction of external motion was accurately encoded in the firing rates of transiently responsive neurons. These data reveal that whisker-specific adaptation and sensorimotor predictions in SC neurons enhance the localization of unexpected, externally generated changes in tactile space.
ISSN:2041-1723