A Comparative Experimental Study of MIMO A&F and D&F Relay Nodes Using a Software-Defined Radio Platform

The relaying technologies in co-operative systems are considered a core element in actual and future wireless communications, assisting the network by enhancing its reliability and improving its capability through exploiting co-operativity. In this paper, a co-operative system testbed based on Softw...

Full description

Bibliographic Details
Main Authors: Randy Verdecia-Peña, José I. Alonso
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/10/5/570
_version_ 1797417027175972864
author Randy Verdecia-Peña
José I. Alonso
author_facet Randy Verdecia-Peña
José I. Alonso
author_sort Randy Verdecia-Peña
collection DOAJ
description The relaying technologies in co-operative systems are considered a core element in actual and future wireless communications, assisting the network by enhancing its reliability and improving its capability through exploiting co-operativity. In this paper, a co-operative system testbed based on Software Defined Radio (SDR) through Universal Software Radio Peripherals (USRPs) and the Matlab<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mi>TM</mi></msup></semantics></math></inline-formula> software is presented. The main novelty in this development of the platform is the implementation of 4G signal features, such as Physical Downlink Shared Channel (PDSCH) and Downlink Shared Channel (DL-SCH) for transport channel coding, which is one of the main contribution of the paper. The developed Multi-Input and Multi-Output (MIMO) SDR co-operative platform is capable of developing prototypes for the Relay Nodes. More specifically, the Amplify-&-Forward (A&F)—with or without Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) Pre-Equalization—and Decode-&-Forward (D&F) protocols were implemented. Both Single-Input and Single-Output (SISO) and MIMO modes are supported by our testbed. The developed A&F and D&F MIMO co-operative systems in this paper utilize Orthogonal Space-Frequency Block Codes (OSFBCs) for the transmission of data symbols from the source to the destination. Our results show that relay nodes can substantially improve the Bit Error Rate (BER) and throughput in communications between the eNodeB (eNB) and User Equipment (UE). In particular, the maximum throughput achieved by conventional MIMO A&F is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9.3</mn><mspace width="4.pt"></mspace><mi>Mbps</mi></mrow></semantics></math></inline-formula> at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SNR</mi><mo>=</mo><mn>16</mn><mspace width="4.pt"></mspace><mi>dB</mi></mrow></semantics></math></inline-formula>, which is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4</mn><mspace width="4.pt"></mspace><mi>Mbps</mi></mrow></semantics></math></inline-formula> higher than throughput of MIMO Non-Co-operative. It also shows the capacity improvement when considering the pre-equalization in the A&F schemes, compared to the conventional A&F Relay Node. For example, with MIMO A&F-MMSE pattern, a value of 11.8 Mbps is achieved for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SNR</mi><mo>=</mo><mn>16</mn><mspace width="4.pt"></mspace><mi>dB</mi></mrow></semantics></math></inline-formula>, which is 84.8 % of the maximum system throughput (13.95 Mbps). On the other hand, the obtained results with D&F schemes far exceed those obtained with A&F strategies, achieving the maximum performance with the 2 × 2 MIMO D&F protocol from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SNR</mi><mo>=</mo><mn>8</mn><mspace width="4.pt"></mspace><mi>dB</mi></mrow></semantics></math></inline-formula>. Furthermore, this work constitutes a first stage to the implementation of a 5G New-Radio Co-operative System platform.
first_indexed 2024-03-09T06:12:54Z
format Article
id doaj.art-a71cd4179cb746328938e265dc031d19
institution Directory Open Access Journal
issn 2079-9292
language English
last_indexed 2024-03-09T06:12:54Z
publishDate 2021-02-01
publisher MDPI AG
record_format Article
series Electronics
spelling doaj.art-a71cd4179cb746328938e265dc031d192023-12-03T11:56:30ZengMDPI AGElectronics2079-92922021-02-0110557010.3390/electronics10050570A Comparative Experimental Study of MIMO A&F and D&F Relay Nodes Using a Software-Defined Radio PlatformRandy Verdecia-Peña0José I. Alonso1Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, 28040 Madrid, SpainInformation Processing and Telecommunications Center, Universidad Politécnica de Madrid, 28040 Madrid, SpainThe relaying technologies in co-operative systems are considered a core element in actual and future wireless communications, assisting the network by enhancing its reliability and improving its capability through exploiting co-operativity. In this paper, a co-operative system testbed based on Software Defined Radio (SDR) through Universal Software Radio Peripherals (USRPs) and the Matlab<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mi>TM</mi></msup></semantics></math></inline-formula> software is presented. The main novelty in this development of the platform is the implementation of 4G signal features, such as Physical Downlink Shared Channel (PDSCH) and Downlink Shared Channel (DL-SCH) for transport channel coding, which is one of the main contribution of the paper. The developed Multi-Input and Multi-Output (MIMO) SDR co-operative platform is capable of developing prototypes for the Relay Nodes. More specifically, the Amplify-&-Forward (A&F)—with or without Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) Pre-Equalization—and Decode-&-Forward (D&F) protocols were implemented. Both Single-Input and Single-Output (SISO) and MIMO modes are supported by our testbed. The developed A&F and D&F MIMO co-operative systems in this paper utilize Orthogonal Space-Frequency Block Codes (OSFBCs) for the transmission of data symbols from the source to the destination. Our results show that relay nodes can substantially improve the Bit Error Rate (BER) and throughput in communications between the eNodeB (eNB) and User Equipment (UE). In particular, the maximum throughput achieved by conventional MIMO A&F is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9.3</mn><mspace width="4.pt"></mspace><mi>Mbps</mi></mrow></semantics></math></inline-formula> at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SNR</mi><mo>=</mo><mn>16</mn><mspace width="4.pt"></mspace><mi>dB</mi></mrow></semantics></math></inline-formula>, which is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4</mn><mspace width="4.pt"></mspace><mi>Mbps</mi></mrow></semantics></math></inline-formula> higher than throughput of MIMO Non-Co-operative. It also shows the capacity improvement when considering the pre-equalization in the A&F schemes, compared to the conventional A&F Relay Node. For example, with MIMO A&F-MMSE pattern, a value of 11.8 Mbps is achieved for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SNR</mi><mo>=</mo><mn>16</mn><mspace width="4.pt"></mspace><mi>dB</mi></mrow></semantics></math></inline-formula>, which is 84.8 % of the maximum system throughput (13.95 Mbps). On the other hand, the obtained results with D&F schemes far exceed those obtained with A&F strategies, achieving the maximum performance with the 2 × 2 MIMO D&F protocol from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SNR</mi><mo>=</mo><mn>8</mn><mspace width="4.pt"></mspace><mi>dB</mi></mrow></semantics></math></inline-formula>. Furthermore, this work constitutes a first stage to the implementation of a 5G New-Radio Co-operative System platform.https://www.mdpi.com/2079-9292/10/5/570amplify-&amp-forwarddecode-&amp-forward4G-software defined radio
spellingShingle Randy Verdecia-Peña
José I. Alonso
A Comparative Experimental Study of MIMO A&F and D&F Relay Nodes Using a Software-Defined Radio Platform
Electronics
amplify-&amp-forward
decode-&amp-forward
4G-software defined radio
title A Comparative Experimental Study of MIMO A&F and D&F Relay Nodes Using a Software-Defined Radio Platform
title_full A Comparative Experimental Study of MIMO A&F and D&F Relay Nodes Using a Software-Defined Radio Platform
title_fullStr A Comparative Experimental Study of MIMO A&F and D&F Relay Nodes Using a Software-Defined Radio Platform
title_full_unstemmed A Comparative Experimental Study of MIMO A&F and D&F Relay Nodes Using a Software-Defined Radio Platform
title_short A Comparative Experimental Study of MIMO A&F and D&F Relay Nodes Using a Software-Defined Radio Platform
title_sort comparative experimental study of mimo a f and d f relay nodes using a software defined radio platform
topic amplify-&amp-forward
decode-&amp-forward
4G-software defined radio
url https://www.mdpi.com/2079-9292/10/5/570
work_keys_str_mv AT randyverdeciapena acomparativeexperimentalstudyofmimoafanddfrelaynodesusingasoftwaredefinedradioplatform
AT joseialonso acomparativeexperimentalstudyofmimoafanddfrelaynodesusingasoftwaredefinedradioplatform
AT randyverdeciapena comparativeexperimentalstudyofmimoafanddfrelaynodesusingasoftwaredefinedradioplatform
AT joseialonso comparativeexperimentalstudyofmimoafanddfrelaynodesusingasoftwaredefinedradioplatform