Robust and Efficient Harmonics Denoising in Large Dataset Based on Random SVD and Soft Thresholding
The Hankel matrix of harmonic signals has the important low-rank property, based on which the principal components (or the eigenvectors) extracted from the matrix by singular value decomposition (SVD) could be applied for harmonic signal denoising. However, SVD is time-consuming, and may even fail t...
Автори: | Yu Yang, Jian Rao |
---|---|
Формат: | Стаття |
Мова: | English |
Опубліковано: |
IEEE
2019-01-01
|
Серія: | IEEE Access |
Предмети: | |
Онлайн доступ: | https://ieeexplore.ieee.org/document/8733082/ |
Схожі ресурси
Схожі ресурси
-
A Harmonic and Interharmonic Detection Method for Power Systems Based on Enhanced SVD and the Prony Algorithm
за авторством: Junsong Gong, та інші
Опубліковано: (2023-06-01) -
MRI Denoising Using Pixel-Wise Threshold Selection
за авторством: Nimesh Srivastava, та інші
Опубліковано: (2024-01-01) -
A Denoising Method for Seismic Data Based on SVD and Deep Learning
за авторством: Guoli Ji, та інші
Опубліковано: (2022-12-01) -
Soft Thresholding Attention Network for Adaptive Feature Denoising in SAR Ship Detection
за авторством: Rui Wang, та інші
Опубліковано: (2021-01-01) -
A SVD-Based Signal De-Noising Method With Fitting Threshold for EMAT
за авторством: Biting Lei, та інші
Опубліковано: (2021-01-01)