Simulating a Hybrid Acquisition System for UAV Platforms
Currently, there is a rapid trend in the production of airborne sensors consisting of multi-view cameras or hybrid sensors, i.e., a LiDAR scanner coupled with one or multiple cameras to enrich the data acquisition in terms of colors, texture, completeness of coverage, accuracy, etc. However, the cur...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-10-01
|
Series: | Drones |
Subjects: | |
Online Access: | https://www.mdpi.com/2504-446X/6/11/314 |
_version_ | 1797468587474026496 |
---|---|
author | Bashar Alsadik Fabio Remondino Francesco Nex |
author_facet | Bashar Alsadik Fabio Remondino Francesco Nex |
author_sort | Bashar Alsadik |
collection | DOAJ |
description | Currently, there is a rapid trend in the production of airborne sensors consisting of multi-view cameras or hybrid sensors, i.e., a LiDAR scanner coupled with one or multiple cameras to enrich the data acquisition in terms of colors, texture, completeness of coverage, accuracy, etc. However, the current UAV hybrid systems are mainly equipped with a single camera that will not be sufficient to view the facades of buildings or other complex objects without having double flight paths with a defined oblique angle. This entails extensive flight planning, acquisition duration, extra costs, and data handling. In this paper, a multi-view camera system which is similar to the conventional Maltese cross configurations used in the standard aerial oblique camera systems is simulated. This proposed camera system is integrated with a multi-beam LiDAR to build an efficient UAV hybrid system. To design the low-cost UAV hybrid system, two types of cameras are investigated and proposed, namely the MAPIR Survey and the SenseFly SODA, integrated with a multi-beam digital Ouster OS1-32 LiDAR sensor. Two simulated UAV flight experiments are created with a dedicated methodology and processed with photogrammetric methods. The results show that with a flight speed of 5 m/s and an image overlap of 80/80, an average density of up to 1500 pts/m<sup>2</sup> can be achieved with adequate facade coverage in one-pass flight strips. |
first_indexed | 2024-03-09T19:08:36Z |
format | Article |
id | doaj.art-a755843338c04c3f9f4acdbd158f5187 |
institution | Directory Open Access Journal |
issn | 2504-446X |
language | English |
last_indexed | 2024-03-09T19:08:36Z |
publishDate | 2022-10-01 |
publisher | MDPI AG |
record_format | Article |
series | Drones |
spelling | doaj.art-a755843338c04c3f9f4acdbd158f51872023-11-24T04:21:42ZengMDPI AGDrones2504-446X2022-10-0161131410.3390/drones6110314Simulating a Hybrid Acquisition System for UAV PlatformsBashar Alsadik0Fabio Remondino1Francesco Nex2Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7514 AE Enschede, The Netherlands3D Optical Metrology Unit, Fondazione Bruno Kessler (FBK), via Sommarive 18, 38123 Trento, ItalyFaculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7514 AE Enschede, The NetherlandsCurrently, there is a rapid trend in the production of airborne sensors consisting of multi-view cameras or hybrid sensors, i.e., a LiDAR scanner coupled with one or multiple cameras to enrich the data acquisition in terms of colors, texture, completeness of coverage, accuracy, etc. However, the current UAV hybrid systems are mainly equipped with a single camera that will not be sufficient to view the facades of buildings or other complex objects without having double flight paths with a defined oblique angle. This entails extensive flight planning, acquisition duration, extra costs, and data handling. In this paper, a multi-view camera system which is similar to the conventional Maltese cross configurations used in the standard aerial oblique camera systems is simulated. This proposed camera system is integrated with a multi-beam LiDAR to build an efficient UAV hybrid system. To design the low-cost UAV hybrid system, two types of cameras are investigated and proposed, namely the MAPIR Survey and the SenseFly SODA, integrated with a multi-beam digital Ouster OS1-32 LiDAR sensor. Two simulated UAV flight experiments are created with a dedicated methodology and processed with photogrammetric methods. The results show that with a flight speed of 5 m/s and an image overlap of 80/80, an average density of up to 1500 pts/m<sup>2</sup> can be achieved with adequate facade coverage in one-pass flight strips.https://www.mdpi.com/2504-446X/6/11/314UAVhybrid systemmulti-viewoblique camerapoint density |
spellingShingle | Bashar Alsadik Fabio Remondino Francesco Nex Simulating a Hybrid Acquisition System for UAV Platforms Drones UAV hybrid system multi-view oblique camera point density |
title | Simulating a Hybrid Acquisition System for UAV Platforms |
title_full | Simulating a Hybrid Acquisition System for UAV Platforms |
title_fullStr | Simulating a Hybrid Acquisition System for UAV Platforms |
title_full_unstemmed | Simulating a Hybrid Acquisition System for UAV Platforms |
title_short | Simulating a Hybrid Acquisition System for UAV Platforms |
title_sort | simulating a hybrid acquisition system for uav platforms |
topic | UAV hybrid system multi-view oblique camera point density |
url | https://www.mdpi.com/2504-446X/6/11/314 |
work_keys_str_mv | AT basharalsadik simulatingahybridacquisitionsystemforuavplatforms AT fabioremondino simulatingahybridacquisitionsystemforuavplatforms AT francesconex simulatingahybridacquisitionsystemforuavplatforms |