Accounting for Cooperativity in the Thermotropic Volume Phase Transition of Smart Microgels

A full quantitative description of the swelling of smart microgels is still problematic in many cases. The original approach of Flory and Huggins for the monomer–solvent interaction parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline&quo...

Full description

Bibliographic Details
Main Authors: Simon Friesen, Yvonne Hannappel, Sergej Kakorin, Thomas Hellweg
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Gels
Subjects:
Online Access:https://www.mdpi.com/2310-2861/7/2/42
_version_ 1797538344873230336
author Simon Friesen
Yvonne Hannappel
Sergej Kakorin
Thomas Hellweg
author_facet Simon Friesen
Yvonne Hannappel
Sergej Kakorin
Thomas Hellweg
author_sort Simon Friesen
collection DOAJ
description A full quantitative description of the swelling of smart microgels is still problematic in many cases. The original approach of Flory and Huggins for the monomer–solvent interaction parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>χ</mi></semantics></math></inline-formula> cannot be applied to some microgels. The reason for this obviously is that the cross-linking enhances the cooperativity of the volume phase transitions, since all meshes of the network are mechanically coupled. This was ignored in previous approaches, arguing with distinct transition temperatures for different meshes to describe the continuous character of the transition of microgels. Here, we adjust the swelling curves of a series of smart microgels using the Flory–Rehner description, where the polymer–solvent interaction parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>χ</mi></semantics></math></inline-formula> is modeled by a Hill-like equation for a cooperative thermotropic transition. This leads to a very good description of all measured microgel swelling curves and yields the physically meaningful Hill parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula>. A linear decrease of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula> is found with increasing concentration of the cross-linker <i>N,N</i><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>′</mo></msup></semantics></math></inline-formula>-methylenebisacrylamide in the microgel particles p(NIPAM), p(NNPAM), and p(NIPMAM). The linearity suggests that the Hill parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula> corresponds to the number of water molecules per network chain that cooperatively leave the chain at the volume phase transition. Driven by entropy, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula> water molecules of the solvate become cooperatively “free” and leave the polymer network.
first_indexed 2024-03-10T12:30:09Z
format Article
id doaj.art-a772e0d9f8e446acb33593399758ebeb
institution Directory Open Access Journal
issn 2310-2861
language English
last_indexed 2024-03-10T12:30:09Z
publishDate 2021-04-01
publisher MDPI AG
record_format Article
series Gels
spelling doaj.art-a772e0d9f8e446acb33593399758ebeb2023-11-21T14:45:34ZengMDPI AGGels2310-28612021-04-01724210.3390/gels7020042Accounting for Cooperativity in the Thermotropic Volume Phase Transition of Smart MicrogelsSimon Friesen0Yvonne Hannappel1Sergej Kakorin2Thomas Hellweg3Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, GermanyDepartment of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, GermanyDepartment of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, GermanyDepartment of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, GermanyA full quantitative description of the swelling of smart microgels is still problematic in many cases. The original approach of Flory and Huggins for the monomer–solvent interaction parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>χ</mi></semantics></math></inline-formula> cannot be applied to some microgels. The reason for this obviously is that the cross-linking enhances the cooperativity of the volume phase transitions, since all meshes of the network are mechanically coupled. This was ignored in previous approaches, arguing with distinct transition temperatures for different meshes to describe the continuous character of the transition of microgels. Here, we adjust the swelling curves of a series of smart microgels using the Flory–Rehner description, where the polymer–solvent interaction parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>χ</mi></semantics></math></inline-formula> is modeled by a Hill-like equation for a cooperative thermotropic transition. This leads to a very good description of all measured microgel swelling curves and yields the physically meaningful Hill parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula>. A linear decrease of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula> is found with increasing concentration of the cross-linker <i>N,N</i><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>′</mo></msup></semantics></math></inline-formula>-methylenebisacrylamide in the microgel particles p(NIPAM), p(NNPAM), and p(NIPMAM). The linearity suggests that the Hill parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula> corresponds to the number of water molecules per network chain that cooperatively leave the chain at the volume phase transition. Driven by entropy, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula> water molecules of the solvate become cooperatively “free” and leave the polymer network.https://www.mdpi.com/2310-2861/7/2/42Flory–Rehner theorymicrogelHill cooperativityFlory–Huggins parameterswelling behaviorNNPAM
spellingShingle Simon Friesen
Yvonne Hannappel
Sergej Kakorin
Thomas Hellweg
Accounting for Cooperativity in the Thermotropic Volume Phase Transition of Smart Microgels
Gels
Flory–Rehner theory
microgel
Hill cooperativity
Flory–Huggins parameter
swelling behavior
NNPAM
title Accounting for Cooperativity in the Thermotropic Volume Phase Transition of Smart Microgels
title_full Accounting for Cooperativity in the Thermotropic Volume Phase Transition of Smart Microgels
title_fullStr Accounting for Cooperativity in the Thermotropic Volume Phase Transition of Smart Microgels
title_full_unstemmed Accounting for Cooperativity in the Thermotropic Volume Phase Transition of Smart Microgels
title_short Accounting for Cooperativity in the Thermotropic Volume Phase Transition of Smart Microgels
title_sort accounting for cooperativity in the thermotropic volume phase transition of smart microgels
topic Flory–Rehner theory
microgel
Hill cooperativity
Flory–Huggins parameter
swelling behavior
NNPAM
url https://www.mdpi.com/2310-2861/7/2/42
work_keys_str_mv AT simonfriesen accountingforcooperativityinthethermotropicvolumephasetransitionofsmartmicrogels
AT yvonnehannappel accountingforcooperativityinthethermotropicvolumephasetransitionofsmartmicrogels
AT sergejkakorin accountingforcooperativityinthethermotropicvolumephasetransitionofsmartmicrogels
AT thomashellweg accountingforcooperativityinthethermotropicvolumephasetransitionofsmartmicrogels