Assessing the spatial variability in peak season CO<sub>2</sub> exchange characteristics across the Arctic tundra using a light response curve parameterization

This paper aims to assess the spatial variability in the response of CO<sub>2</sub> exchange to irradiance across the Arctic tundra during peak season using light response curve (LRC) parameters. This investigation allows us to better understand the future response of Arctic tundra under...

Full description

Bibliographic Details
Main Authors: H. N. Mbufong, M. Lund, M. Aurela, T. R. Christensen, W. Eugster, T. Friborg, B. U. Hansen, E. R. Humphreys, M. Jackowicz-Korczynski, L. Kutzbach, P. M. Lafleur, W. C. Oechel, F. J. W. Parmentier, D. P. Rasse, A. V. Rocha, T. Sachs, M. K. van der Molen, M. P. Tamstorf
Format: Article
Language:English
Published: Copernicus Publications 2014-09-01
Series:Biogeosciences
Online Access:http://www.biogeosciences.net/11/4897/2014/bg-11-4897-2014.pdf
_version_ 1819275181957316608
author H. N. Mbufong
M. Lund
M. Aurela
T. R. Christensen
W. Eugster
T. Friborg
B. U. Hansen
E. R. Humphreys
M. Jackowicz-Korczynski
L. Kutzbach
P. M. Lafleur
W. C. Oechel
F. J. W. Parmentier
D. P. Rasse
A. V. Rocha
T. Sachs
M. K. van der Molen
M. P. Tamstorf
author_facet H. N. Mbufong
M. Lund
M. Aurela
T. R. Christensen
W. Eugster
T. Friborg
B. U. Hansen
E. R. Humphreys
M. Jackowicz-Korczynski
L. Kutzbach
P. M. Lafleur
W. C. Oechel
F. J. W. Parmentier
D. P. Rasse
A. V. Rocha
T. Sachs
M. K. van der Molen
M. P. Tamstorf
author_sort H. N. Mbufong
collection DOAJ
description This paper aims to assess the spatial variability in the response of CO<sub>2</sub> exchange to irradiance across the Arctic tundra during peak season using light response curve (LRC) parameters. This investigation allows us to better understand the future response of Arctic tundra under climatic change. Peak season data were collected during different years (between 1998 and 2010) using the micrometeorological eddy covariance technique from 12 circumpolar Arctic tundra sites, in the range of 64–74° N. <br><br> The LRCs were generated for 14 days with peak net ecosystem exchange (NEE) using an NEE–irradiance model. Parameters from LRCs represent site-specific traits and characteristics describing the following: (a) NEE at light saturation (<i>F</i><sub>csat</sub>), (b) dark respiration (<i>R</i><sub>d</sub>), (c) light use efficiency (&alpha;), (d) NEE when light is at 1000 μmol m<sup>−2</sup> s<sup>−1</sup> (<i>F</i><sub>c1000</sub>), (e) potential photosynthesis at light saturation (<i>P</i><sub>sat</sub>) and (f) the light compensation point (LCP). <br><br> Parameterization of LRCs was successful in predicting CO<sub>2</sub> flux dynamics across the Arctic tundra. We did not find any trends in LRC parameters across the whole Arctic tundra but there were indications for temperature and latitudinal differences within sub-regions like Russia and Greenland. Together, leaf area index (LAI) and July temperature had a high explanatory power of the variance in assimilation parameters (<i>F</i><sub>csat</sub>, <i>F</i><sub>c1000</sub> and <i>P</i><sub>sat</sub>, thus illustrating the potential for upscaling CO<sub>2</sub> exchange for the whole Arctic tundra. Dark respiration was more variable and less correlated to environmental drivers than were assimilation parameters. This indicates the inherent need to include other parameters such as nutrient availability, substrate quantity and quality in flux monitoring activities.
first_indexed 2024-12-23T23:20:15Z
format Article
id doaj.art-a775835fe387482ebb3520660792c705
institution Directory Open Access Journal
issn 1726-4170
1726-4189
language English
last_indexed 2024-12-23T23:20:15Z
publishDate 2014-09-01
publisher Copernicus Publications
record_format Article
series Biogeosciences
spelling doaj.art-a775835fe387482ebb3520660792c7052022-12-21T17:26:22ZengCopernicus PublicationsBiogeosciences1726-41701726-41892014-09-0111174897491210.5194/bg-11-4897-2014Assessing the spatial variability in peak season CO<sub>2</sub> exchange characteristics across the Arctic tundra using a light response curve parameterizationH. N. Mbufong0M. Lund1M. Aurela2T. R. Christensen3W. Eugster4T. Friborg5B. U. Hansen6E. R. Humphreys7M. Jackowicz-Korczynski8L. Kutzbach9P. M. Lafleur10W. C. Oechel11F. J. W. Parmentier12D. P. Rasse13A. V. Rocha14T. Sachs15M. K. van der Molen16M. P. Tamstorf17Arctic Research Center, Department of Bioscience, Aarhus University, Roskilde, DenmarkArctic Research Center, Department of Bioscience, Aarhus University, Roskilde, DenmarkFinnish Meteorological Institute, Helsinki, FinlandArctic Research Center, Department of Bioscience, Aarhus University, Roskilde, DenmarkETH Zürich, Institute of Agricultural Sciences, Dept. Env. Systems Science, Zurich, SwitzerlandDepartment of Geography and Geology, University of Copenhagen, Copenhagen, DenmarkDepartment of Geography and Geology, University of Copenhagen, Copenhagen, DenmarkDepartment of Geography, Trent University, Trent, CanadaDepartment of Physical Geography and Ecosystem Science, Lund University, Lund, SwedenInstitute of Soil Science, University of Hamburg, Hamburg, GermanyDepartment of Geography, Trent University, Trent, CanadaDepartment of Biology, San Diego State University, San Diego, California, USAArctic Research Center, Department of Bioscience, Aarhus University, Roskilde, DenmarkBioforsk, Norwegian Institute for Agricultural and Environmental Research, Ås, NorwayUniversity of Notre Dame, Department of Biological Sciences, Notre Dame, Indiana, USAHelmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, GermanyMeteorology and Air Quality group, Wageningen University, Wageningen, the NetherlandsArctic Research Center, Department of Bioscience, Aarhus University, Roskilde, DenmarkThis paper aims to assess the spatial variability in the response of CO<sub>2</sub> exchange to irradiance across the Arctic tundra during peak season using light response curve (LRC) parameters. This investigation allows us to better understand the future response of Arctic tundra under climatic change. Peak season data were collected during different years (between 1998 and 2010) using the micrometeorological eddy covariance technique from 12 circumpolar Arctic tundra sites, in the range of 64–74° N. <br><br> The LRCs were generated for 14 days with peak net ecosystem exchange (NEE) using an NEE–irradiance model. Parameters from LRCs represent site-specific traits and characteristics describing the following: (a) NEE at light saturation (<i>F</i><sub>csat</sub>), (b) dark respiration (<i>R</i><sub>d</sub>), (c) light use efficiency (&alpha;), (d) NEE when light is at 1000 μmol m<sup>−2</sup> s<sup>−1</sup> (<i>F</i><sub>c1000</sub>), (e) potential photosynthesis at light saturation (<i>P</i><sub>sat</sub>) and (f) the light compensation point (LCP). <br><br> Parameterization of LRCs was successful in predicting CO<sub>2</sub> flux dynamics across the Arctic tundra. We did not find any trends in LRC parameters across the whole Arctic tundra but there were indications for temperature and latitudinal differences within sub-regions like Russia and Greenland. Together, leaf area index (LAI) and July temperature had a high explanatory power of the variance in assimilation parameters (<i>F</i><sub>csat</sub>, <i>F</i><sub>c1000</sub> and <i>P</i><sub>sat</sub>, thus illustrating the potential for upscaling CO<sub>2</sub> exchange for the whole Arctic tundra. Dark respiration was more variable and less correlated to environmental drivers than were assimilation parameters. This indicates the inherent need to include other parameters such as nutrient availability, substrate quantity and quality in flux monitoring activities.http://www.biogeosciences.net/11/4897/2014/bg-11-4897-2014.pdf
spellingShingle H. N. Mbufong
M. Lund
M. Aurela
T. R. Christensen
W. Eugster
T. Friborg
B. U. Hansen
E. R. Humphreys
M. Jackowicz-Korczynski
L. Kutzbach
P. M. Lafleur
W. C. Oechel
F. J. W. Parmentier
D. P. Rasse
A. V. Rocha
T. Sachs
M. K. van der Molen
M. P. Tamstorf
Assessing the spatial variability in peak season CO<sub>2</sub> exchange characteristics across the Arctic tundra using a light response curve parameterization
Biogeosciences
title Assessing the spatial variability in peak season CO<sub>2</sub> exchange characteristics across the Arctic tundra using a light response curve parameterization
title_full Assessing the spatial variability in peak season CO<sub>2</sub> exchange characteristics across the Arctic tundra using a light response curve parameterization
title_fullStr Assessing the spatial variability in peak season CO<sub>2</sub> exchange characteristics across the Arctic tundra using a light response curve parameterization
title_full_unstemmed Assessing the spatial variability in peak season CO<sub>2</sub> exchange characteristics across the Arctic tundra using a light response curve parameterization
title_short Assessing the spatial variability in peak season CO<sub>2</sub> exchange characteristics across the Arctic tundra using a light response curve parameterization
title_sort assessing the spatial variability in peak season co sub 2 sub exchange characteristics across the arctic tundra using a light response curve parameterization
url http://www.biogeosciences.net/11/4897/2014/bg-11-4897-2014.pdf
work_keys_str_mv AT hnmbufong assessingthespatialvariabilityinpeakseasoncosub2subexchangecharacteristicsacrossthearctictundrausingalightresponsecurveparameterization
AT mlund assessingthespatialvariabilityinpeakseasoncosub2subexchangecharacteristicsacrossthearctictundrausingalightresponsecurveparameterization
AT maurela assessingthespatialvariabilityinpeakseasoncosub2subexchangecharacteristicsacrossthearctictundrausingalightresponsecurveparameterization
AT trchristensen assessingthespatialvariabilityinpeakseasoncosub2subexchangecharacteristicsacrossthearctictundrausingalightresponsecurveparameterization
AT weugster assessingthespatialvariabilityinpeakseasoncosub2subexchangecharacteristicsacrossthearctictundrausingalightresponsecurveparameterization
AT tfriborg assessingthespatialvariabilityinpeakseasoncosub2subexchangecharacteristicsacrossthearctictundrausingalightresponsecurveparameterization
AT buhansen assessingthespatialvariabilityinpeakseasoncosub2subexchangecharacteristicsacrossthearctictundrausingalightresponsecurveparameterization
AT erhumphreys assessingthespatialvariabilityinpeakseasoncosub2subexchangecharacteristicsacrossthearctictundrausingalightresponsecurveparameterization
AT mjackowiczkorczynski assessingthespatialvariabilityinpeakseasoncosub2subexchangecharacteristicsacrossthearctictundrausingalightresponsecurveparameterization
AT lkutzbach assessingthespatialvariabilityinpeakseasoncosub2subexchangecharacteristicsacrossthearctictundrausingalightresponsecurveparameterization
AT pmlafleur assessingthespatialvariabilityinpeakseasoncosub2subexchangecharacteristicsacrossthearctictundrausingalightresponsecurveparameterization
AT wcoechel assessingthespatialvariabilityinpeakseasoncosub2subexchangecharacteristicsacrossthearctictundrausingalightresponsecurveparameterization
AT fjwparmentier assessingthespatialvariabilityinpeakseasoncosub2subexchangecharacteristicsacrossthearctictundrausingalightresponsecurveparameterization
AT dprasse assessingthespatialvariabilityinpeakseasoncosub2subexchangecharacteristicsacrossthearctictundrausingalightresponsecurveparameterization
AT avrocha assessingthespatialvariabilityinpeakseasoncosub2subexchangecharacteristicsacrossthearctictundrausingalightresponsecurveparameterization
AT tsachs assessingthespatialvariabilityinpeakseasoncosub2subexchangecharacteristicsacrossthearctictundrausingalightresponsecurveparameterization
AT mkvandermolen assessingthespatialvariabilityinpeakseasoncosub2subexchangecharacteristicsacrossthearctictundrausingalightresponsecurveparameterization
AT mptamstorf assessingthespatialvariabilityinpeakseasoncosub2subexchangecharacteristicsacrossthearctictundrausingalightresponsecurveparameterization