<i>k</i>-Zero-Divisor and Ideal-Based <i>k</i>-Zero-Divisor Hypergraphs of Some Commutative Rings

Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">R</mi></semantics></math></inline-formula> be a commutative ring with nonzero identity and <inlin...

Full description

Bibliographic Details
Main Authors: Pinkaew Siriwong, Ratinan Boonklurb
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/11/1980
_version_ 1797508386784280576
author Pinkaew Siriwong
Ratinan Boonklurb
author_facet Pinkaew Siriwong
Ratinan Boonklurb
author_sort Pinkaew Siriwong
collection DOAJ
description Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">R</mi></semantics></math></inline-formula> be a commutative ring with nonzero identity and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula> be a fixed integer. The <i>k</i>-zero-divisor hypergraph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">H</mi><mi>k</mi></msub><mrow><mo>(</mo><mi mathvariant="script">R</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">R</mi></semantics></math></inline-formula> consists of the vertex set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Z</mi><mo>(</mo><mi mathvariant="script">R</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>, the set of all <i>k</i>-zero-divisors of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">R</mi></semantics></math></inline-formula>, and the hyperedges of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msub><mi>a</mi><mn>1</mn></msub><mo>,</mo><msub><mi>a</mi><mn>2</mn></msub><mo>,</mo><msub><mi>a</mi><mn>3</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>a</mi><mi>k</mi></msub><mo>}</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>a</mi><mn>1</mn></msub><mo>,</mo><msub><mi>a</mi><mn>2</mn></msub><mo>,</mo><msub><mi>a</mi><mn>3</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>a</mi><mi>k</mi></msub></mrow></semantics></math></inline-formula> are <i>k</i> distinct elements in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Z</mi><mo>(</mo><mi mathvariant="script">R</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>, which means (i) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>a</mi><mn>1</mn></msub><msub><mi>a</mi><mn>2</mn></msub><msub><mi>a</mi><mn>3</mn></msub><mo>⋯</mo><msub><mi>a</mi><mi>k</mi></msub><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> and (ii) the products of all elements of any (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula>) subsets of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msub><mi>a</mi><mn>1</mn></msub><mo>,</mo><msub><mi>a</mi><mn>2</mn></msub><mo>,</mo><msub><mi>a</mi><mn>3</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>a</mi><mi>k</mi></msub><mo>}</mo></mrow></semantics></math></inline-formula> are nonzero. This paper provides two commutative rings so that one of them induces a family of complete <i>k</i>-zero-divisor hypergraphs, while another induces a family of <i>k</i>-partite <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>-zero-divisor hypergraphs, which illustrates unbalanced or asymmetric structure. Moreover, the diameter and the minimum length of all cycles or girth of the family of <i>k</i>-partite <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>-zero-divisor hypergraphs are determined. In addition to a <i>k</i>-zero-divisor hypergraph, we provide the definition of an ideal-based <i>k</i>-zero-divisor hypergraph and some basic results on these hypergraphs concerning a complete <i>k</i>-partite <i>k</i>-uniform hypergraph, a complete <i>k</i>-uniform hypergraph, and a clique.
first_indexed 2024-03-10T05:02:18Z
format Article
id doaj.art-a77ff44c800b4d02b2f35042a25aa53b
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T05:02:18Z
publishDate 2021-10-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-a77ff44c800b4d02b2f35042a25aa53b2023-11-23T01:42:48ZengMDPI AGSymmetry2073-89942021-10-011311198010.3390/sym13111980<i>k</i>-Zero-Divisor and Ideal-Based <i>k</i>-Zero-Divisor Hypergraphs of Some Commutative RingsPinkaew Siriwong0Ratinan Boonklurb1Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, ThailandDepartment of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, ThailandLet <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">R</mi></semantics></math></inline-formula> be a commutative ring with nonzero identity and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula> be a fixed integer. The <i>k</i>-zero-divisor hypergraph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">H</mi><mi>k</mi></msub><mrow><mo>(</mo><mi mathvariant="script">R</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">R</mi></semantics></math></inline-formula> consists of the vertex set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Z</mi><mo>(</mo><mi mathvariant="script">R</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>, the set of all <i>k</i>-zero-divisors of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">R</mi></semantics></math></inline-formula>, and the hyperedges of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msub><mi>a</mi><mn>1</mn></msub><mo>,</mo><msub><mi>a</mi><mn>2</mn></msub><mo>,</mo><msub><mi>a</mi><mn>3</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>a</mi><mi>k</mi></msub><mo>}</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>a</mi><mn>1</mn></msub><mo>,</mo><msub><mi>a</mi><mn>2</mn></msub><mo>,</mo><msub><mi>a</mi><mn>3</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>a</mi><mi>k</mi></msub></mrow></semantics></math></inline-formula> are <i>k</i> distinct elements in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Z</mi><mo>(</mo><mi mathvariant="script">R</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>, which means (i) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>a</mi><mn>1</mn></msub><msub><mi>a</mi><mn>2</mn></msub><msub><mi>a</mi><mn>3</mn></msub><mo>⋯</mo><msub><mi>a</mi><mi>k</mi></msub><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> and (ii) the products of all elements of any (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula>) subsets of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msub><mi>a</mi><mn>1</mn></msub><mo>,</mo><msub><mi>a</mi><mn>2</mn></msub><mo>,</mo><msub><mi>a</mi><mn>3</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>a</mi><mi>k</mi></msub><mo>}</mo></mrow></semantics></math></inline-formula> are nonzero. This paper provides two commutative rings so that one of them induces a family of complete <i>k</i>-zero-divisor hypergraphs, while another induces a family of <i>k</i>-partite <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>-zero-divisor hypergraphs, which illustrates unbalanced or asymmetric structure. Moreover, the diameter and the minimum length of all cycles or girth of the family of <i>k</i>-partite <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>-zero-divisor hypergraphs are determined. In addition to a <i>k</i>-zero-divisor hypergraph, we provide the definition of an ideal-based <i>k</i>-zero-divisor hypergraph and some basic results on these hypergraphs concerning a complete <i>k</i>-partite <i>k</i>-uniform hypergraph, a complete <i>k</i>-uniform hypergraph, and a clique.https://www.mdpi.com/2073-8994/13/11/1980<i>k</i>-zero-divisor<i>k</i>-zero-divisor hypergraphideal-based <i>k</i>-zero-divisorideal-based <i>k</i>-zero-divisor hypergraphcomplete <i>k</i>-uniform hypergraph<i>k</i>-partite <i>k</i>-uniform hypergraph
spellingShingle Pinkaew Siriwong
Ratinan Boonklurb
<i>k</i>-Zero-Divisor and Ideal-Based <i>k</i>-Zero-Divisor Hypergraphs of Some Commutative Rings
Symmetry
<i>k</i>-zero-divisor
<i>k</i>-zero-divisor hypergraph
ideal-based <i>k</i>-zero-divisor
ideal-based <i>k</i>-zero-divisor hypergraph
complete <i>k</i>-uniform hypergraph
<i>k</i>-partite <i>k</i>-uniform hypergraph
title <i>k</i>-Zero-Divisor and Ideal-Based <i>k</i>-Zero-Divisor Hypergraphs of Some Commutative Rings
title_full <i>k</i>-Zero-Divisor and Ideal-Based <i>k</i>-Zero-Divisor Hypergraphs of Some Commutative Rings
title_fullStr <i>k</i>-Zero-Divisor and Ideal-Based <i>k</i>-Zero-Divisor Hypergraphs of Some Commutative Rings
title_full_unstemmed <i>k</i>-Zero-Divisor and Ideal-Based <i>k</i>-Zero-Divisor Hypergraphs of Some Commutative Rings
title_short <i>k</i>-Zero-Divisor and Ideal-Based <i>k</i>-Zero-Divisor Hypergraphs of Some Commutative Rings
title_sort i k i zero divisor and ideal based i k i zero divisor hypergraphs of some commutative rings
topic <i>k</i>-zero-divisor
<i>k</i>-zero-divisor hypergraph
ideal-based <i>k</i>-zero-divisor
ideal-based <i>k</i>-zero-divisor hypergraph
complete <i>k</i>-uniform hypergraph
<i>k</i>-partite <i>k</i>-uniform hypergraph
url https://www.mdpi.com/2073-8994/13/11/1980
work_keys_str_mv AT pinkaewsiriwong ikizerodivisorandidealbasedikizerodivisorhypergraphsofsomecommutativerings
AT ratinanboonklurb ikizerodivisorandidealbasedikizerodivisorhypergraphsofsomecommutativerings