Summary: | The results of a study of the processes involved in the production of indium oxide In<sub>2</sub>O<sub>3</sub> powder, which is widely used to create transparent and electrically conducting ceramics, are described. The powder was produced in a flow of rare gas (argon or helium) at atmospheric pressure under conditions for the formation of metal-containing plasma in a non-arc discharge mode. The discharge operated in pulsed mode with a pulse repetition rate of 70 kHz and pulse duration of 12 μs. The discharge current was 670 mA and discharge voltages were 180 V and 250 V when the working gases were argon and helium, respectively. These parameters ensure a mode in which the indium cap of a molybdenum cathode suffers thermal erosion. The morphology and elemental and phase composition of the erosion products were studied using transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) analysis. It was shown that the structure of the synthesized powder particles corresponded to a phase of indium oxide (III) with a body-centered cubic (bcc) lattice with lattice parameter a = 1.013 nm. The powder particles, regardless of the working gas (Ar or He), consisted of non-stoichiometric indium oxide In<sub>2</sub>O<sub>3</sub> with a nanocrystalline structure. The average particle diameter was <<i>d</i>> = 13–16 nm.
|