Optimization of Solid-Supported Glaser-Hay Reactions in the Microwave
The translation of organometallic reactions into a microwave reactor has numerous advantages. Herein, we describe the application of a previously developed solid-supported Glaser-Hay reaction to microwave conditions. Overall, an array of diynes has been prepared demonstrating the ability to conduct...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2015-03-01
|
Series: | Molecules |
Subjects: | |
Online Access: | http://www.mdpi.com/1420-3049/20/4/5276 |
Summary: | The translation of organometallic reactions into a microwave reactor has numerous advantages. Herein, we describe the application of a previously developed solid-supported Glaser-Hay reaction to microwave conditions. Overall, an array of diynes has been prepared demonstrating the ability to conduct chemoselective reactions in the microwave within 20 min compared to the 16 h thermal conditions. Moreover, non-microwave transparent alkynes have been found to react more quickly, preventing catalyst quenching, and resulting in higher yields. |
---|---|
ISSN: | 1420-3049 |