Numerical investigation on the tensile fracturing behavior of rock-shotcrete interface based on discrete element method

Four groups of numerical models of Brazilian tests on rock-shotcrete interfaces were successfully conducted by PFC2D. The tensile strength and Young’s modulus of shotcrete were considered. Six different undulations of rock-shotcrete interface were set up. The influences of multiple parameters on the...

Full description

Bibliographic Details
Main Authors: Jiadong Qiu, Lin Luo, Xibing Li, Diyuan Li, Ying Chen, Yong Luo
Format: Article
Language:English
Published: Elsevier 2020-05-01
Series:International Journal of Mining Science and Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2095268619303556
Description
Summary:Four groups of numerical models of Brazilian tests on rock-shotcrete interfaces were successfully conducted by PFC2D. The tensile strength and Young’s modulus of shotcrete were considered. Six different undulations of rock-shotcrete interface were set up. The influences of multiple parameters on the bearing characteristics of the rock-shotcrete interface were studied. The results showed that a better support performance can be obtained by increasing the Young’s modulus of shotcrete rather than the tensile strength of shotcrete. For different tensile strength and Young’s modulus, the increase of sawtooth height has different effects on the support performance. The failure mechanism of the rock-shotcrete interfaces was analysed in detail. The stress shielding effect and stress concentration effect caused by the shape characteristics of rock-shotcrete interface were observed. The influence of these parameters on the overall support performance should be fully considered in a reasonable support design.
ISSN:2095-2686