Evaluating log-tangent integrals via Euler sums

An investigation into the representation of integrals involving the product of the logarithm and the arctan functions, reducing to log-tangent integrals, will be undertaken in this paper. We will show that in many cases these integrals take an explicit form involving the Riemann zeta function, the D...

Full description

Bibliographic Details
Main Author: Anthony Sofo
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2022-02-01
Series:Mathematical Modelling and Analysis
Subjects:
Online Access:https://journals.vgtu.lt/index.php/MMA/article/view/13100
_version_ 1818896775680884736
author Anthony Sofo
author_facet Anthony Sofo
author_sort Anthony Sofo
collection DOAJ
description An investigation into the representation of integrals involving the product of the logarithm and the arctan functions, reducing to log-tangent integrals, will be undertaken in this paper. We will show that in many cases these integrals take an explicit form involving the Riemann zeta function, the Dirichlet eta function, Dirichlet lambda function and many other special functions. Some examples illustrating the theorems will be detailed.
first_indexed 2024-12-19T19:05:39Z
format Article
id doaj.art-a79bfd7f287b45399b6e70c00f04e2bf
institution Directory Open Access Journal
issn 1392-6292
1648-3510
language English
last_indexed 2024-12-19T19:05:39Z
publishDate 2022-02-01
publisher Vilnius Gediminas Technical University
record_format Article
series Mathematical Modelling and Analysis
spelling doaj.art-a79bfd7f287b45399b6e70c00f04e2bf2022-12-21T20:09:28ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35102022-02-012711–181–1810.3846/mma.2022.1310013100Evaluating log-tangent integrals via Euler sumsAnthony Sofo0College of Engineering and Science, Victoria University, Ballarat Rd., 8001 Melbourne, AustraliaAn investigation into the representation of integrals involving the product of the logarithm and the arctan functions, reducing to log-tangent integrals, will be undertaken in this paper. We will show that in many cases these integrals take an explicit form involving the Riemann zeta function, the Dirichlet eta function, Dirichlet lambda function and many other special functions. Some examples illustrating the theorems will be detailed.https://journals.vgtu.lt/index.php/MMA/article/view/13100dirichlet beta functionslog-tangent integraleuler sumsdirichlet lambda functionzeta functions
spellingShingle Anthony Sofo
Evaluating log-tangent integrals via Euler sums
Mathematical Modelling and Analysis
dirichlet beta functions
log-tangent integral
euler sums
dirichlet lambda function
zeta functions
title Evaluating log-tangent integrals via Euler sums
title_full Evaluating log-tangent integrals via Euler sums
title_fullStr Evaluating log-tangent integrals via Euler sums
title_full_unstemmed Evaluating log-tangent integrals via Euler sums
title_short Evaluating log-tangent integrals via Euler sums
title_sort evaluating log tangent integrals via euler sums
topic dirichlet beta functions
log-tangent integral
euler sums
dirichlet lambda function
zeta functions
url https://journals.vgtu.lt/index.php/MMA/article/view/13100
work_keys_str_mv AT anthonysofo evaluatinglogtangentintegralsviaeulersums