Reactive Power Control Method for Enhancing the Transient Stability Total Transfer Capability of Transmission Lines for a System with Large-Scale Renewable Energy Sources

With the increased proportion of intermittent renewable energy sources (RES) integrated into the sending-end, the total transfer capability of transmission lines is not sufficient during the peak periods of renewable primary energy (e.g., the wind force), causing severe RES power curtailment. The to...

Full description

Bibliographic Details
Main Authors: Yuwei Zhang, Wenying Liu, Fangyu Wang, Yaoxiang Zhang, Yalou Li
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/12/3154
Description
Summary:With the increased proportion of intermittent renewable energy sources (RES) integrated into the sending-end, the total transfer capability of transmission lines is not sufficient during the peak periods of renewable primary energy (e.g., the wind force), causing severe RES power curtailment. The total transfer capability of transmission lines is generally restricted by the transient stability total transfer capability (TSTTC). This paper presents a reactive power control method to enhance the TSTTC of transmission lines. The key is to obtain the sensitivity between TSTTC and reactive power, while the Thevenin equivalent voltage is the link connecting TSTTC and reactive power. The Thevenin theorem states that an active circuit between two load terminals can be considered as an individual voltage source. The voltage of this source would be open-circuit voltage across the terminals, and the internal impedance of the source is the equivalent impedance of the circuit across the terminals. The Thevenin voltage used in Thevenin’s theorem is an ideal voltage source equal to the open-circuit voltage at the terminals. Thus, the sensitivities between TSTTC and the Thevenin equivalent voltages of the sending-end and receiving-end were firstly derived using the equal area criterion. Secondly, the sensitivity between the Thevenin equivalent voltage and reactive power was derived using the total differentiation method. By connecting the above sensitivities together with the relevant parameters calculated from Thevenin equivalent parameter identification and power flow equation, the sensitivity between TSTTC and reactive power was obtained, which was used as the control priority in the proposed reactive power control method. At last, the method was applied to the Gansu Province Power Grid in China to demonstrate its effectiveness, and the accuracy of the sensitivity between TSTTC and reactive power was verified.
ISSN:1996-1073