Assessment of Explosion Safety Status within the Area of an LNG Terminal in a Function of Selected Parameters

This paper examines the issues of designing optimization tasks with the objective of ensuring the safety and continuation of transportation processes. Modelling the processes that are a consequence of a breakdown is a crucial issue enabling an increase of safety at selected stages of transport. This...

Full description

Bibliographic Details
Main Authors: Agnieszka Magdalena Kalbarczyk-Jedynak, Magdalena Ślączka-Wilk, Magdalena Kaup, Wojciech Ślączka, Dorota Łozowicka
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/11/4057
Description
Summary:This paper examines the issues of designing optimization tasks with the objective of ensuring the safety and continuation of transportation processes. Modelling the processes that are a consequence of a breakdown is a crucial issue enabling an increase of safety at selected stages of transport. This paper elaborates on the matter of modelling hazardous situations resulting from an uncontrolled LNG release due to a crash or damage to a ship’s hull. This paper demonstrates subsequent stages of modelling along with theoretical assumptions and finally it presents the results of simulation calculations for various scenarios of LNG releases. The article shows the complexity of modelling at a time when variable atmospheric conditions occur, which hinder the planning of rescue operations in the event of an uncontrolled LNG release into the atmosphere. It needs to be remembered that making decisions in critical situations and developing proper procedures at a time when people’s lives are at risk or in the face of an environmental pollution incident constitutes one of the most significant components of effective management in transport. Two LNG release scenarios are presented in this article: catastrophic rupture and leak, for which danger zone dimensions were calculated. Simulations were conducted with the use of a tool called Phast ver. 8.23 for LNG. Calculations were made in a function of variable weather conditions and for two values of Pasquill coefficients.
ISSN:1996-1073