Multi-Line Fit Model for the Detection of Methane at ν2 + 2ν3 Band using Hollow-Core Photonic Bandgap Fibres

Hollow-core photonic bandgap fibres (HC-PBFs) have emerged as a novel technology in the field of gas sensing. The long interaction pathlengths achievable with these fibres are especially advantageous for the detection of weakly absorbing gases. In this work, we demonstrate the good performance of a...

Full description

Bibliographic Details
Main Authors: Ana M. Cubillas, Jose M. Lazaro, Olga M. Conde, Marco N. Petrovich, Jose M. Lopez-Higuera
Format: Article
Language:English
Published: MDPI AG 2009-01-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/9/1/490/
Description
Summary:Hollow-core photonic bandgap fibres (HC-PBFs) have emerged as a novel technology in the field of gas sensing. The long interaction pathlengths achievable with these fibres are especially advantageous for the detection of weakly absorbing gases. In this work, we demonstrate the good performance of a HC-PBF in the detection of the ν2 + 2ν3 band of methane, at 1.3 μm. The Q-branch manifold, at 1331.55 nm, is targeted for concentration monitoring purposes. A computationally optimized multi-line model is used to fit the Q-branch. Using this model, a detection limit of 98 ppmv (parts per million by volume) is estimated.
ISSN:1424-8220