Genetic Variation in Tolerance to Iron Deficiency among Species of <i>Oryza</i>
Transplanted rice cultivation has caused groundwater depletion in several regions globally. Direct-seeded rice under aerobic conditions is a water-saving alternative. However, under aerobic conditions, iron in the soil is oxidized from the ferrous to ferric forms, which are not easily available to r...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-06-01
|
Series: | Crops |
Subjects: | |
Online Access: | https://www.mdpi.com/2673-7655/3/3/18 |
_version_ | 1827726625487192064 |
---|---|
author | Rahul Kumar Huseyin Yer |
author_facet | Rahul Kumar Huseyin Yer |
author_sort | Rahul Kumar |
collection | DOAJ |
description | Transplanted rice cultivation has caused groundwater depletion in several regions globally. Direct-seeded rice under aerobic conditions is a water-saving alternative. However, under aerobic conditions, iron in the soil is oxidized from the ferrous to ferric forms, which are not easily available to rice crops, resulting in iron-deficiency-induced chlorosis (IDIC) and causing significant reductions in yield. Cultivated rice accessions have limited variations in IDIC tolerance, while the wild Oryza germplasm could be a potential source of IDIC tolerance. In this study, 313 Oryza accessions were evaluated for IDIC tolerance at the tillering stage under aerobic conditions and 20 IDIC-tolerant lines were identified. The twenty lines showed no signs of chlorosis and had high levels of iron content and SPAD values, while the eight cultivated controls exhibited varying degrees of chlorosis symptoms and low levels of SPAD and iron content. To confirm their tolerance, the selected lines were evaluated again in a subsequent year, and they showed comparable levels of tolerance, indicating that these lines were efficient in iron uptake and utilization, resulting in maintained high chlorophyll and leaf area index. These accessions may be useful for developing IDIC-tolerant cultivars for aerobic rice cultivation and future studies of the molecular basis of IDIC tolerance. |
first_indexed | 2024-03-10T22:54:31Z |
format | Article |
id | doaj.art-a7b2ff95b3eb448095ca5ae69b9b52dc |
institution | Directory Open Access Journal |
issn | 2673-7655 |
language | English |
last_indexed | 2024-03-10T22:54:31Z |
publishDate | 2023-06-01 |
publisher | MDPI AG |
record_format | Article |
series | Crops |
spelling | doaj.art-a7b2ff95b3eb448095ca5ae69b9b52dc2023-11-19T10:08:28ZengMDPI AGCrops2673-76552023-06-013318419410.3390/crops3030018Genetic Variation in Tolerance to Iron Deficiency among Species of <i>Oryza</i>Rahul Kumar0Huseyin Yer1Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141004, IndiaDepartment of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USATransplanted rice cultivation has caused groundwater depletion in several regions globally. Direct-seeded rice under aerobic conditions is a water-saving alternative. However, under aerobic conditions, iron in the soil is oxidized from the ferrous to ferric forms, which are not easily available to rice crops, resulting in iron-deficiency-induced chlorosis (IDIC) and causing significant reductions in yield. Cultivated rice accessions have limited variations in IDIC tolerance, while the wild Oryza germplasm could be a potential source of IDIC tolerance. In this study, 313 Oryza accessions were evaluated for IDIC tolerance at the tillering stage under aerobic conditions and 20 IDIC-tolerant lines were identified. The twenty lines showed no signs of chlorosis and had high levels of iron content and SPAD values, while the eight cultivated controls exhibited varying degrees of chlorosis symptoms and low levels of SPAD and iron content. To confirm their tolerance, the selected lines were evaluated again in a subsequent year, and they showed comparable levels of tolerance, indicating that these lines were efficient in iron uptake and utilization, resulting in maintained high chlorophyll and leaf area index. These accessions may be useful for developing IDIC-tolerant cultivars for aerobic rice cultivation and future studies of the molecular basis of IDIC tolerance.https://www.mdpi.com/2673-7655/3/3/18aerobic ricechlorosisiron deficiency<i>Oryza</i>wild germplasmIDIC |
spellingShingle | Rahul Kumar Huseyin Yer Genetic Variation in Tolerance to Iron Deficiency among Species of <i>Oryza</i> Crops aerobic rice chlorosis iron deficiency <i>Oryza</i> wild germplasm IDIC |
title | Genetic Variation in Tolerance to Iron Deficiency among Species of <i>Oryza</i> |
title_full | Genetic Variation in Tolerance to Iron Deficiency among Species of <i>Oryza</i> |
title_fullStr | Genetic Variation in Tolerance to Iron Deficiency among Species of <i>Oryza</i> |
title_full_unstemmed | Genetic Variation in Tolerance to Iron Deficiency among Species of <i>Oryza</i> |
title_short | Genetic Variation in Tolerance to Iron Deficiency among Species of <i>Oryza</i> |
title_sort | genetic variation in tolerance to iron deficiency among species of i oryza i |
topic | aerobic rice chlorosis iron deficiency <i>Oryza</i> wild germplasm IDIC |
url | https://www.mdpi.com/2673-7655/3/3/18 |
work_keys_str_mv | AT rahulkumar geneticvariationintolerancetoirondeficiencyamongspeciesofioryzai AT huseyinyer geneticvariationintolerancetoirondeficiencyamongspeciesofioryzai |