Review: Role of early life nutrition in regulating sexual development in bulls

The availability of high-quality semen from genetically elite bulls is essential to support continued genetic gain and the sustainability of cattle production worldwide. While reducing the age at which usable semen is available also reduces the generation interval, it is dependent on timely onset of...

Full description

Bibliographic Details
Main Authors: C.J. Byrne, K. Keogh, D.A. Kenny
Format: Article
Language:English
Published: Elsevier 2023-05-01
Series:Animal
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1751731123000988
Description
Summary:The availability of high-quality semen from genetically elite bulls is essential to support continued genetic gain and the sustainability of cattle production worldwide. While reducing the age at which usable semen is available also reduces the generation interval, it is dependent on timely onset of puberty in young bulls. There is now good evidence that hastened sexual development in bulls is achieved through enhancing nutrition in early life. This review will cover the physiological and molecular-based response to prevailing diet in key organs that orchestrate the ontogeny of sexual development in the bull calf. Given the central importance of the interaction between metabolic status and neuronal function to the progression of sexual development, we will discuss how communication between metabolic organs, reproductive organs and the brain are mediated via molecular and physiological processes. The availability of high-throughput nucleic acid and protein sequencing technologies and innovative data analytics have allowed us to improve our understanding of molecular regulation of puberty and sexual development. Analysing data from a number of organs, simultaneously, allows for a better understanding of the underlying biology and biochemical interactions that are influencing sexual development. Specifically, we can determine how early life nutritional interventions augment changes in potential key molecules regulating sexual development. Ultimately, a greater understanding of the inherent regulation of postnatal sexual development in the bull calf and how strategically targeted nutritional management can advance the ontogeny of this process, will facilitate the timely availability of high-quality semen from genetically elite animals, thus supporting more economically and environmentally sustainable beef and dairy production systems.
ISSN:1751-7311