Improvement of HEK293 Cell Growth by Adapting Hydrodynamic Stress and Predicting Cell Aggregate Size Distribution

HEK293 is a widely used cell line in the fields of research and industry. It is assumed that these cells are sensitive to hydrodynamic stress. The aim of this research was to use particle image velocimetry validated computational fluid dynamics (CFD) to determine the hydrodynamic stress in both shak...

Full description

Bibliographic Details
Main Authors: Stefan Seidel, Rüdiger W. Maschke, Fruhar Mozaffari, Regine Eibl-Schindler, Dieter Eibl
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Bioengineering
Subjects:
Online Access:https://www.mdpi.com/2306-5354/10/4/478
_version_ 1827745849359204352
author Stefan Seidel
Rüdiger W. Maschke
Fruhar Mozaffari
Regine Eibl-Schindler
Dieter Eibl
author_facet Stefan Seidel
Rüdiger W. Maschke
Fruhar Mozaffari
Regine Eibl-Schindler
Dieter Eibl
author_sort Stefan Seidel
collection DOAJ
description HEK293 is a widely used cell line in the fields of research and industry. It is assumed that these cells are sensitive to hydrodynamic stress. The aim of this research was to use particle image velocimetry validated computational fluid dynamics (CFD) to determine the hydrodynamic stress in both shake flasks, with and without baffles, and in stirred Minifors 2 bioreactors to evaluate its effect on the growth and aggregate size distribution of HEK293 suspension cells. The HEK FreeStyle<sup>TM</sup> 293-F cell line was cultivated in batch mode at different specific power inputs (from 63 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> to 451 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>), whereby <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>≈</mo><mn>60</mn><mo> </mo><mrow><mi mathvariant="normal">W</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></mrow></semantics></math></inline-formula> corresponds to the upper limit, which is what has been typically described in published experiments. In addition to the specific growth rate and maximum viable cell density VCD<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>max</mi></msub></semantics></math></inline-formula>, the cell size distribution over time and cluster size distribution were investigated. The VCD<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>max</mi></msub></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>5.77</mn><mo>±</mo><mn>0.02</mn><mo>)</mo><mo>·</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>cells</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="normal">L</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> was reached at a specific power input of 233 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> and was <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>23.8</mn><mo>%</mo></mrow></semantics></math></inline-formula> higher than the value obtained at 63 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>7.2</mn><mo>%</mo></mrow></semantics></math></inline-formula> higher than the value obtained at 451 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>. No significant change in the cell size distribution could be measured in the investigated range. It was shown that the cell cluster size distribution follows a strict geometric distribution whose free parameter <i>p</i> is linearly dependent on the mean Kolmogorov length scale. Based on the performed experiments, it has been shown that by using CFD-characterised bioreactors, the VCD<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>max</mi></msub></semantics></math></inline-formula> can be increased and the cell aggregate rate can be precisely controlled.
first_indexed 2024-03-11T05:14:15Z
format Article
id doaj.art-a7d6ae671f0e4c9eb14bb33e3d1f351c
institution Directory Open Access Journal
issn 2306-5354
language English
last_indexed 2024-03-11T05:14:15Z
publishDate 2023-04-01
publisher MDPI AG
record_format Article
series Bioengineering
spelling doaj.art-a7d6ae671f0e4c9eb14bb33e3d1f351c2023-11-17T18:22:39ZengMDPI AGBioengineering2306-53542023-04-0110447810.3390/bioengineering10040478Improvement of HEK293 Cell Growth by Adapting Hydrodynamic Stress and Predicting Cell Aggregate Size DistributionStefan Seidel0Rüdiger W. Maschke1Fruhar Mozaffari2Regine Eibl-Schindler3Dieter Eibl4Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, SwitzerlandInstitute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, SwitzerlandInstitute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, SwitzerlandInstitute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, SwitzerlandInstitute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, SwitzerlandHEK293 is a widely used cell line in the fields of research and industry. It is assumed that these cells are sensitive to hydrodynamic stress. The aim of this research was to use particle image velocimetry validated computational fluid dynamics (CFD) to determine the hydrodynamic stress in both shake flasks, with and without baffles, and in stirred Minifors 2 bioreactors to evaluate its effect on the growth and aggregate size distribution of HEK293 suspension cells. The HEK FreeStyle<sup>TM</sup> 293-F cell line was cultivated in batch mode at different specific power inputs (from 63 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> to 451 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>), whereby <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>≈</mo><mn>60</mn><mo> </mo><mrow><mi mathvariant="normal">W</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></mrow></semantics></math></inline-formula> corresponds to the upper limit, which is what has been typically described in published experiments. In addition to the specific growth rate and maximum viable cell density VCD<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>max</mi></msub></semantics></math></inline-formula>, the cell size distribution over time and cluster size distribution were investigated. The VCD<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>max</mi></msub></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>5.77</mn><mo>±</mo><mn>0.02</mn><mo>)</mo><mo>·</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>cells</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="normal">L</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> was reached at a specific power input of 233 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> and was <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>23.8</mn><mo>%</mo></mrow></semantics></math></inline-formula> higher than the value obtained at 63 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>7.2</mn><mo>%</mo></mrow></semantics></math></inline-formula> higher than the value obtained at 451 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>. No significant change in the cell size distribution could be measured in the investigated range. It was shown that the cell cluster size distribution follows a strict geometric distribution whose free parameter <i>p</i> is linearly dependent on the mean Kolmogorov length scale. Based on the performed experiments, it has been shown that by using CFD-characterised bioreactors, the VCD<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>max</mi></msub></semantics></math></inline-formula> can be increased and the cell aggregate rate can be precisely controlled.https://www.mdpi.com/2306-5354/10/4/478aggregate size distributionbiochemical engineeringCFD computational fluid dynamicsenergy dissipation ratefluid dynamic stressHEK293 suspension culture
spellingShingle Stefan Seidel
Rüdiger W. Maschke
Fruhar Mozaffari
Regine Eibl-Schindler
Dieter Eibl
Improvement of HEK293 Cell Growth by Adapting Hydrodynamic Stress and Predicting Cell Aggregate Size Distribution
Bioengineering
aggregate size distribution
biochemical engineering
CFD computational fluid dynamics
energy dissipation rate
fluid dynamic stress
HEK293 suspension culture
title Improvement of HEK293 Cell Growth by Adapting Hydrodynamic Stress and Predicting Cell Aggregate Size Distribution
title_full Improvement of HEK293 Cell Growth by Adapting Hydrodynamic Stress and Predicting Cell Aggregate Size Distribution
title_fullStr Improvement of HEK293 Cell Growth by Adapting Hydrodynamic Stress and Predicting Cell Aggregate Size Distribution
title_full_unstemmed Improvement of HEK293 Cell Growth by Adapting Hydrodynamic Stress and Predicting Cell Aggregate Size Distribution
title_short Improvement of HEK293 Cell Growth by Adapting Hydrodynamic Stress and Predicting Cell Aggregate Size Distribution
title_sort improvement of hek293 cell growth by adapting hydrodynamic stress and predicting cell aggregate size distribution
topic aggregate size distribution
biochemical engineering
CFD computational fluid dynamics
energy dissipation rate
fluid dynamic stress
HEK293 suspension culture
url https://www.mdpi.com/2306-5354/10/4/478
work_keys_str_mv AT stefanseidel improvementofhek293cellgrowthbyadaptinghydrodynamicstressandpredictingcellaggregatesizedistribution
AT rudigerwmaschke improvementofhek293cellgrowthbyadaptinghydrodynamicstressandpredictingcellaggregatesizedistribution
AT fruharmozaffari improvementofhek293cellgrowthbyadaptinghydrodynamicstressandpredictingcellaggregatesizedistribution
AT regineeiblschindler improvementofhek293cellgrowthbyadaptinghydrodynamicstressandpredictingcellaggregatesizedistribution
AT dietereibl improvementofhek293cellgrowthbyadaptinghydrodynamicstressandpredictingcellaggregatesizedistribution