Improvement of HEK293 Cell Growth by Adapting Hydrodynamic Stress and Predicting Cell Aggregate Size Distribution
HEK293 is a widely used cell line in the fields of research and industry. It is assumed that these cells are sensitive to hydrodynamic stress. The aim of this research was to use particle image velocimetry validated computational fluid dynamics (CFD) to determine the hydrodynamic stress in both shak...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-04-01
|
Series: | Bioengineering |
Subjects: | |
Online Access: | https://www.mdpi.com/2306-5354/10/4/478 |
_version_ | 1827745849359204352 |
---|---|
author | Stefan Seidel Rüdiger W. Maschke Fruhar Mozaffari Regine Eibl-Schindler Dieter Eibl |
author_facet | Stefan Seidel Rüdiger W. Maschke Fruhar Mozaffari Regine Eibl-Schindler Dieter Eibl |
author_sort | Stefan Seidel |
collection | DOAJ |
description | HEK293 is a widely used cell line in the fields of research and industry. It is assumed that these cells are sensitive to hydrodynamic stress. The aim of this research was to use particle image velocimetry validated computational fluid dynamics (CFD) to determine the hydrodynamic stress in both shake flasks, with and without baffles, and in stirred Minifors 2 bioreactors to evaluate its effect on the growth and aggregate size distribution of HEK293 suspension cells. The HEK FreeStyle<sup>TM</sup> 293-F cell line was cultivated in batch mode at different specific power inputs (from 63 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> to 451 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>), whereby <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>≈</mo><mn>60</mn><mo> </mo><mrow><mi mathvariant="normal">W</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></mrow></semantics></math></inline-formula> corresponds to the upper limit, which is what has been typically described in published experiments. In addition to the specific growth rate and maximum viable cell density VCD<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>max</mi></msub></semantics></math></inline-formula>, the cell size distribution over time and cluster size distribution were investigated. The VCD<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>max</mi></msub></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>5.77</mn><mo>±</mo><mn>0.02</mn><mo>)</mo><mo>·</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>cells</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="normal">L</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> was reached at a specific power input of 233 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> and was <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>23.8</mn><mo>%</mo></mrow></semantics></math></inline-formula> higher than the value obtained at 63 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>7.2</mn><mo>%</mo></mrow></semantics></math></inline-formula> higher than the value obtained at 451 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>. No significant change in the cell size distribution could be measured in the investigated range. It was shown that the cell cluster size distribution follows a strict geometric distribution whose free parameter <i>p</i> is linearly dependent on the mean Kolmogorov length scale. Based on the performed experiments, it has been shown that by using CFD-characterised bioreactors, the VCD<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>max</mi></msub></semantics></math></inline-formula> can be increased and the cell aggregate rate can be precisely controlled. |
first_indexed | 2024-03-11T05:14:15Z |
format | Article |
id | doaj.art-a7d6ae671f0e4c9eb14bb33e3d1f351c |
institution | Directory Open Access Journal |
issn | 2306-5354 |
language | English |
last_indexed | 2024-03-11T05:14:15Z |
publishDate | 2023-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Bioengineering |
spelling | doaj.art-a7d6ae671f0e4c9eb14bb33e3d1f351c2023-11-17T18:22:39ZengMDPI AGBioengineering2306-53542023-04-0110447810.3390/bioengineering10040478Improvement of HEK293 Cell Growth by Adapting Hydrodynamic Stress and Predicting Cell Aggregate Size DistributionStefan Seidel0Rüdiger W. Maschke1Fruhar Mozaffari2Regine Eibl-Schindler3Dieter Eibl4Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, SwitzerlandInstitute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, SwitzerlandInstitute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, SwitzerlandInstitute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, SwitzerlandInstitute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, SwitzerlandHEK293 is a widely used cell line in the fields of research and industry. It is assumed that these cells are sensitive to hydrodynamic stress. The aim of this research was to use particle image velocimetry validated computational fluid dynamics (CFD) to determine the hydrodynamic stress in both shake flasks, with and without baffles, and in stirred Minifors 2 bioreactors to evaluate its effect on the growth and aggregate size distribution of HEK293 suspension cells. The HEK FreeStyle<sup>TM</sup> 293-F cell line was cultivated in batch mode at different specific power inputs (from 63 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> to 451 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>), whereby <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>≈</mo><mn>60</mn><mo> </mo><mrow><mi mathvariant="normal">W</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></mrow></semantics></math></inline-formula> corresponds to the upper limit, which is what has been typically described in published experiments. In addition to the specific growth rate and maximum viable cell density VCD<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>max</mi></msub></semantics></math></inline-formula>, the cell size distribution over time and cluster size distribution were investigated. The VCD<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>max</mi></msub></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>5.77</mn><mo>±</mo><mn>0.02</mn><mo>)</mo><mo>·</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>cells</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="normal">L</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> was reached at a specific power input of 233 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> and was <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>23.8</mn><mo>%</mo></mrow></semantics></math></inline-formula> higher than the value obtained at 63 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>7.2</mn><mo>%</mo></mrow></semantics></math></inline-formula> higher than the value obtained at 451 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><mo> </mo><msup><mi mathvariant="normal">m</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>. No significant change in the cell size distribution could be measured in the investigated range. It was shown that the cell cluster size distribution follows a strict geometric distribution whose free parameter <i>p</i> is linearly dependent on the mean Kolmogorov length scale. Based on the performed experiments, it has been shown that by using CFD-characterised bioreactors, the VCD<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>max</mi></msub></semantics></math></inline-formula> can be increased and the cell aggregate rate can be precisely controlled.https://www.mdpi.com/2306-5354/10/4/478aggregate size distributionbiochemical engineeringCFD computational fluid dynamicsenergy dissipation ratefluid dynamic stressHEK293 suspension culture |
spellingShingle | Stefan Seidel Rüdiger W. Maschke Fruhar Mozaffari Regine Eibl-Schindler Dieter Eibl Improvement of HEK293 Cell Growth by Adapting Hydrodynamic Stress and Predicting Cell Aggregate Size Distribution Bioengineering aggregate size distribution biochemical engineering CFD computational fluid dynamics energy dissipation rate fluid dynamic stress HEK293 suspension culture |
title | Improvement of HEK293 Cell Growth by Adapting Hydrodynamic Stress and Predicting Cell Aggregate Size Distribution |
title_full | Improvement of HEK293 Cell Growth by Adapting Hydrodynamic Stress and Predicting Cell Aggregate Size Distribution |
title_fullStr | Improvement of HEK293 Cell Growth by Adapting Hydrodynamic Stress and Predicting Cell Aggregate Size Distribution |
title_full_unstemmed | Improvement of HEK293 Cell Growth by Adapting Hydrodynamic Stress and Predicting Cell Aggregate Size Distribution |
title_short | Improvement of HEK293 Cell Growth by Adapting Hydrodynamic Stress and Predicting Cell Aggregate Size Distribution |
title_sort | improvement of hek293 cell growth by adapting hydrodynamic stress and predicting cell aggregate size distribution |
topic | aggregate size distribution biochemical engineering CFD computational fluid dynamics energy dissipation rate fluid dynamic stress HEK293 suspension culture |
url | https://www.mdpi.com/2306-5354/10/4/478 |
work_keys_str_mv | AT stefanseidel improvementofhek293cellgrowthbyadaptinghydrodynamicstressandpredictingcellaggregatesizedistribution AT rudigerwmaschke improvementofhek293cellgrowthbyadaptinghydrodynamicstressandpredictingcellaggregatesizedistribution AT fruharmozaffari improvementofhek293cellgrowthbyadaptinghydrodynamicstressandpredictingcellaggregatesizedistribution AT regineeiblschindler improvementofhek293cellgrowthbyadaptinghydrodynamicstressandpredictingcellaggregatesizedistribution AT dietereibl improvementofhek293cellgrowthbyadaptinghydrodynamicstressandpredictingcellaggregatesizedistribution |