Dosimetric Validation of a GAN-Based Pseudo-CT Generation for MRI-Only Stereotactic Brain Radiotherapy

Purpose: Stereotactic radiotherapy (SRT) has become widely accepted as a treatment of choice for patients with a small number of brain metastases that are of an acceptable size, allowing for better target dose conformity, resulting in high local control rates and better sparing of organs at risk. An...

Full description

Bibliographic Details
Main Authors: Vincent Bourbonne, Vincent Jaouen, Clément Hognon, Nicolas Boussion, François Lucia, Olivier Pradier, Julien Bert, Dimitris Visvikis, Ulrike Schick
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Cancers
Subjects:
Online Access:https://www.mdpi.com/2072-6694/13/5/1082
Description
Summary:Purpose: Stereotactic radiotherapy (SRT) has become widely accepted as a treatment of choice for patients with a small number of brain metastases that are of an acceptable size, allowing for better target dose conformity, resulting in high local control rates and better sparing of organs at risk. An MRI-only workflow could reduce the risk of misalignment between magnetic resonance imaging (MRI) brain studies and computed tomography (CT) scanning for SRT planning, while shortening delays in planning. Given the absence of a calibrated electronic density in MRI, we aimed to assess the equivalence of synthetic CTs generated by a generative adversarial network (GAN) for planning in the brain SRT setting. Methods: All patients with available MRIs and treated with intra-cranial SRT for brain metastases from 2014 to 2018 in our institution were included. After co-registration between the diagnostic MRI and the planning CT, a synthetic CT was generated using a 2D-GAN (2D U-Net). Using the initial treatment plan (Pinnacle v9.10, Philips Healthcare), dosimetric comparison was performed using main dose-volume histogram (DVH) endpoints in respect to ICRU 91 guidelines (Dmax, Dmean, D2%, D50%, D98%) as well as local and global gamma analysis with 1%/1 mm, 2%/1 mm and 2%/2 mm criteria and a 10% threshold to the maximum dose. <i>t</i>-test analysis was used for comparison between the two cohorts (initial and synthetic dose maps). Results: 184 patients were included, with 290 treated brain metastases. The mean number of treated lesions per patient was 1 (range 1–6) and the median planning target volume (PTV) was 6.44 cc (range 0.12–45.41). Local and global gamma passing rates (2%/2 mm) were 99.1 CI95% (98.1–99.4) and 99.7 CI95% (99.6–99.7) respectively (CI: confidence interval). DVHs were comparable, with no significant statistical differences regarding ICRU 91′s endpoints. Conclusions: Our study is the first to compare GAN-generated CT scans from diagnostic brain MRIs with initial CT scans for the planning of brain stereotactic radiotherapy. We found high similarity between the planning CT and the synthetic CT for both the organs at risk and the target volumes. Prospective validation is under investigation at our institution.
ISSN:2072-6694