Online Identification of VLRA Battery Model Parameters Using Electrochemical Impedance Spectroscopy

This paper introduces the use of a new low-computation cost algorithm combining neural networks with the Nelder–Mead simplex method to monitor the variations of the parameters of a previously selected equivalent circuit calculated from Electrochemical Impedance Spectroscopy (EIS) corresponding to a...

Full description

Bibliographic Details
Main Authors: Javier Olarte, Jaione Martinez de Ilarduya, Ekaitz Zulueta, Raquel Ferret, Joseba Garcia-Ortega, Jose Manuel Lopez-Guede
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Batteries
Subjects:
Online Access:https://www.mdpi.com/2313-0105/8/11/238
_version_ 1827644942005043200
author Javier Olarte
Jaione Martinez de Ilarduya
Ekaitz Zulueta
Raquel Ferret
Joseba Garcia-Ortega
Jose Manuel Lopez-Guede
author_facet Javier Olarte
Jaione Martinez de Ilarduya
Ekaitz Zulueta
Raquel Ferret
Joseba Garcia-Ortega
Jose Manuel Lopez-Guede
author_sort Javier Olarte
collection DOAJ
description This paper introduces the use of a new low-computation cost algorithm combining neural networks with the Nelder–Mead simplex method to monitor the variations of the parameters of a previously selected equivalent circuit calculated from Electrochemical Impedance Spectroscopy (EIS) corresponding to a series of battery aging experiments. These variations could be correlated with variations in the battery state over time and, therefore, identify or predict battery degradation patterns or failure modes. The authors have benchmarked four different Electrical Equivalent Circuit (EEC) parameter identification algorithms: plain neural network mapping EIS raw data to EEC parameters, Particle Swarm Optimization, Zview, and the proposed new one. In order to improve the prediction accuracy of the neural network, a data augmentation method has been proposed to improve the neural network training error. The proposed parameter identification algorithms have been compared and validated through real data obtained from a six-month aging test experiment carried out with a set of six commercial 80 Ah VLRA batteries under different cycling and temperature operation conditions.
first_indexed 2024-03-09T18:28:35Z
format Article
id doaj.art-a7f2344ebb0a4a57a61092f8e8a651e4
institution Directory Open Access Journal
issn 2313-0105
language English
last_indexed 2024-03-09T18:28:35Z
publishDate 2022-11-01
publisher MDPI AG
record_format Article
series Batteries
spelling doaj.art-a7f2344ebb0a4a57a61092f8e8a651e42023-11-24T07:43:43ZengMDPI AGBatteries2313-01052022-11-0181123810.3390/batteries8110238Online Identification of VLRA Battery Model Parameters Using Electrochemical Impedance SpectroscopyJavier Olarte0Jaione Martinez de Ilarduya1Ekaitz Zulueta2Raquel Ferret3Joseba Garcia-Ortega4Jose Manuel Lopez-Guede5Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Álava, SpainCentre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Álava, SpainDepartment of Systems and Automatic Control, Faculty of Engineering of Vitoria-Gasteiz, University of the Basque Country (UPV/EHU), Nieves Cano, 01006 Vitoria-Gasteiz, Álava, SpainCentre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Álava, SpainDepartment of Systems and Automatic Control, Faculty of Engineering of Vitoria-Gasteiz, University of the Basque Country (UPV/EHU), Nieves Cano, 01006 Vitoria-Gasteiz, Álava, SpainDepartment of Systems and Automatic Control, Faculty of Engineering of Vitoria-Gasteiz, University of the Basque Country (UPV/EHU), Nieves Cano, 01006 Vitoria-Gasteiz, Álava, SpainThis paper introduces the use of a new low-computation cost algorithm combining neural networks with the Nelder–Mead simplex method to monitor the variations of the parameters of a previously selected equivalent circuit calculated from Electrochemical Impedance Spectroscopy (EIS) corresponding to a series of battery aging experiments. These variations could be correlated with variations in the battery state over time and, therefore, identify or predict battery degradation patterns or failure modes. The authors have benchmarked four different Electrical Equivalent Circuit (EEC) parameter identification algorithms: plain neural network mapping EIS raw data to EEC parameters, Particle Swarm Optimization, Zview, and the proposed new one. In order to improve the prediction accuracy of the neural network, a data augmentation method has been proposed to improve the neural network training error. The proposed parameter identification algorithms have been compared and validated through real data obtained from a six-month aging test experiment carried out with a set of six commercial 80 Ah VLRA batteries under different cycling and temperature operation conditions.https://www.mdpi.com/2313-0105/8/11/238lead-acid batteryelectrochemical impedance spectroscopy (EIS)neural networks (NN)electrical equivalent circuit (EEC)State of Charge (SOC)State of Health (SOH)
spellingShingle Javier Olarte
Jaione Martinez de Ilarduya
Ekaitz Zulueta
Raquel Ferret
Joseba Garcia-Ortega
Jose Manuel Lopez-Guede
Online Identification of VLRA Battery Model Parameters Using Electrochemical Impedance Spectroscopy
Batteries
lead-acid battery
electrochemical impedance spectroscopy (EIS)
neural networks (NN)
electrical equivalent circuit (EEC)
State of Charge (SOC)
State of Health (SOH)
title Online Identification of VLRA Battery Model Parameters Using Electrochemical Impedance Spectroscopy
title_full Online Identification of VLRA Battery Model Parameters Using Electrochemical Impedance Spectroscopy
title_fullStr Online Identification of VLRA Battery Model Parameters Using Electrochemical Impedance Spectroscopy
title_full_unstemmed Online Identification of VLRA Battery Model Parameters Using Electrochemical Impedance Spectroscopy
title_short Online Identification of VLRA Battery Model Parameters Using Electrochemical Impedance Spectroscopy
title_sort online identification of vlra battery model parameters using electrochemical impedance spectroscopy
topic lead-acid battery
electrochemical impedance spectroscopy (EIS)
neural networks (NN)
electrical equivalent circuit (EEC)
State of Charge (SOC)
State of Health (SOH)
url https://www.mdpi.com/2313-0105/8/11/238
work_keys_str_mv AT javierolarte onlineidentificationofvlrabatterymodelparametersusingelectrochemicalimpedancespectroscopy
AT jaionemartinezdeilarduya onlineidentificationofvlrabatterymodelparametersusingelectrochemicalimpedancespectroscopy
AT ekaitzzulueta onlineidentificationofvlrabatterymodelparametersusingelectrochemicalimpedancespectroscopy
AT raquelferret onlineidentificationofvlrabatterymodelparametersusingelectrochemicalimpedancespectroscopy
AT josebagarciaortega onlineidentificationofvlrabatterymodelparametersusingelectrochemicalimpedancespectroscopy
AT josemanuellopezguede onlineidentificationofvlrabatterymodelparametersusingelectrochemicalimpedancespectroscopy