Existencia y dependencia continua de solución de la ecuación Boussinesq de onda en espacios de Sobolev periódico
We will begin our study, focusing on the theory of periodic Sobolev spaces, for this we cite [1]. Then, we will prove that the non-homogeneous Boussinesq equation has a local solution and that the solution also continually depends on the initial data and non-homogeneity, we do this intuitively using...
Main Authors: | , |
---|---|
Format: | Article |
Language: | Spanish |
Published: |
Universidad Nacional de Trujillo
2020-07-01
|
Series: | Selecciones Matemáticas |
Subjects: | |
Online Access: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2958/3287 |
_version_ | 1818854380186632192 |
---|---|
author | Victor Papuico Bernardo Yolanda Santiago Ayala |
author_facet | Victor Papuico Bernardo Yolanda Santiago Ayala |
author_sort | Victor Papuico Bernardo |
collection | DOAJ |
description | We will begin our study, focusing on the theory of periodic Sobolev spaces, for this we cite [1]. Then, we will prove that the non-homogeneous Boussinesq equation has a local solution and that the solution also continually depends on the initial data and non-homogeneity, we do this intuitively using Fourier theory and in an elegant version introducing families of strongly continuous operators, inspired by the work of Iorio [1], Santiago and Rojas [4], [3] and [2]. |
first_indexed | 2024-12-19T07:51:47Z |
format | Article |
id | doaj.art-a7f7884672bd4032bdaf7388e540abf3 |
institution | Directory Open Access Journal |
issn | 2411-1783 |
language | Spanish |
last_indexed | 2024-12-19T07:51:47Z |
publishDate | 2020-07-01 |
publisher | Universidad Nacional de Trujillo |
record_format | Article |
series | Selecciones Matemáticas |
spelling | doaj.art-a7f7884672bd4032bdaf7388e540abf32022-12-21T20:30:09ZspaUniversidad Nacional de TrujilloSelecciones Matemáticas2411-17832020-07-017017496http://dx.doi.org/10.17268/sel.mat.2020.01.07Existencia y dependencia continua de solución de la ecuación Boussinesq de onda en espacios de Sobolev periódicoVictor Papuico Bernardo0https://orcid.org/0000-0002-8835-7922Yolanda Santiago Ayala1https://orcid.org/0000-0003-2516-0871Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Av. Venezuela S/N Lima 01, Lima-PerúFacultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Av. Venezuela S/N Lima 01, Lima-PerúWe will begin our study, focusing on the theory of periodic Sobolev spaces, for this we cite [1]. Then, we will prove that the non-homogeneous Boussinesq equation has a local solution and that the solution also continually depends on the initial data and non-homogeneity, we do this intuitively using Fourier theory and in an elegant version introducing families of strongly continuous operators, inspired by the work of Iorio [1], Santiago and Rojas [4], [3] and [2].https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2958/3287family of strongly continuous operatorsboussinesq equationfourier theoryperiodic sobolev spaces |
spellingShingle | Victor Papuico Bernardo Yolanda Santiago Ayala Existencia y dependencia continua de solución de la ecuación Boussinesq de onda en espacios de Sobolev periódico Selecciones Matemáticas family of strongly continuous operators boussinesq equation fourier theory periodic sobolev spaces |
title | Existencia y dependencia continua de solución de la ecuación Boussinesq de onda en espacios de Sobolev periódico |
title_full | Existencia y dependencia continua de solución de la ecuación Boussinesq de onda en espacios de Sobolev periódico |
title_fullStr | Existencia y dependencia continua de solución de la ecuación Boussinesq de onda en espacios de Sobolev periódico |
title_full_unstemmed | Existencia y dependencia continua de solución de la ecuación Boussinesq de onda en espacios de Sobolev periódico |
title_short | Existencia y dependencia continua de solución de la ecuación Boussinesq de onda en espacios de Sobolev periódico |
title_sort | existencia y dependencia continua de solucion de la ecuacion boussinesq de onda en espacios de sobolev periodico |
topic | family of strongly continuous operators boussinesq equation fourier theory periodic sobolev spaces |
url | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2958/3287 |
work_keys_str_mv | AT victorpapuicobernardo existenciaydependenciacontinuadesoluciondelaecuacionboussinesqdeondaenespaciosdesobolevperiodico AT yolandasantiagoayala existenciaydependenciacontinuadesoluciondelaecuacionboussinesqdeondaenespaciosdesobolevperiodico |