Social Content Recommendation Based on Spatial-Temporal Aware Diffusion Modeling in Social Networks

User interactions in online social networks (OSNs) enable the spread of information and enhance the information dissemination process, but at the same time they exacerbate the information overload problem. In this paper, we propose a social content recommendation method based on spatial-temporal awa...

Full description

Bibliographic Details
Main Authors: Farman Ullah, Sungchang Lee
Format: Article
Language:English
Published: MDPI AG 2016-09-01
Series:Symmetry
Subjects:
Online Access:http://www.mdpi.com/2073-8994/8/9/89
Description
Summary:User interactions in online social networks (OSNs) enable the spread of information and enhance the information dissemination process, but at the same time they exacerbate the information overload problem. In this paper, we propose a social content recommendation method based on spatial-temporal aware controlled information diffusion modeling in OSNs. Users interact more frequently when they are close to each other geographically, have similar behaviors, and fall into similar demographic categories. Considering these facts, we propose multicriteria-based social ties relationship and temporal-aware probabilistic information diffusion modeling for controlled information spread maximization in OSNs. The proposed social ties relationship modeling takes into account user spatial information, content trust, opinion similarity, and demographics. We suggest a ranking algorithm that considers the user ties strength with friends and friends-of-friends to rank users in OSNs and select highly influential injection nodes. These nodes are able to improve social content recommendations, minimize information diffusion time, and maximize information spread. Furthermore, the proposed temporal-aware probabilistic diffusion process categorizes the nodes and diffuses the recommended content to only those users who are highly influential and can enhance information dissemination. The experimental results show the effectiveness of the proposed scheme.
ISSN:2073-8994