Beneficial Effects of L-Carnitine Supplementation during IVM of Canine Oocytes on Their Nuclear Maturation and Development In Vitro

This study aimed to investigate the effect of L-Carnitine (LC) supplementation during in vitro maturation (IVM) of canine oocytes on nuclear maturation, fertilization status, and preimplantation development. Cumulus–oocyte complexes (COCs) collected from the ovaries of ovariohysterectomized female d...

Full description

Bibliographic Details
Main Authors: Adel R. Moawad, Ali Salama, Magdy R. Badr, Mohamed Fathi
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Animals
Subjects:
Online Access:https://www.mdpi.com/2076-2615/11/2/581
Description
Summary:This study aimed to investigate the effect of L-Carnitine (LC) supplementation during in vitro maturation (IVM) of canine oocytes on nuclear maturation, fertilization status, and preimplantation development. Cumulus–oocyte complexes (COCs) collected from the ovaries of ovariohysterectomized female dogs were matured in vitro for 72 h in a TCM-199 medium supplemented with (0.1, 0.3, 0.6, 1.0, or 2.0 mg/mL) or without (0.0 mg/mL) LC. Matured oocytes were fertilized in vitro with frozen–thawed spermatozoa, and zygotes were cultured in a SOF medium for 7 days. IVM rates were higher (<i>p ≤</i> 0.05) in 0.3 and 0.6 mg/mL LC supplemented groups than in the control (0.0 mg/mL LC) and other LC groups. Fertilization (18 h postinsemination (pi)) and cleavage (2–16-cell stage at day 3 pi) rates were higher (<i>p ≤</i> 0.05) in the 0.6 mg/mL LC group than in the control and 0.1, 1.0, and 2 mg/mL LC supplemented groups. Interestingly, 4.5% of fertilized oocytes developed to morula (day 5 pi) in the 0.6 mg/mL LC group, which was higher (<i>p ≤</i> 0.05) than those developed in the 0.3 mg/mL group (1.0%). No cleaved embryos developed to morula in other groups. In conclusion, LC supplementation at 0.6 mg/mL during IVM of canine oocytes improved their maturation, fertilization, and preimplantation embryo development rates following IVF and in vitro culture (IVC).
ISSN:2076-2615