Beryllium layer response to ITER-like ELM plasma pulses in QSPA-Be

Material migration in ITER is expected to move beryllium (Be) eroded from the first wall primarily to the tungsten (W) divertor region and to magnetically shadowed areas of the wall itself. This paper is concerned with experimental study of Be layer response to ELM-like plasma pulses using the new Q...

Full description

Bibliographic Details
Main Authors: N.S. Klimov, V.L. Podkovyrov, I.B. Kupriyanov, J. Linke, R.A. Pitts, V.M. Safronov, D.V. Kovalenko, Th. Loewenhoff, C.P. Lungu, G. Pintsuk, G. De Temmerman, A.D. Muzichenko, A.A. Markin, P.N. Taratorkin, N.E. Zabirova, A.M. Zhitlukhin
Format: Article
Language:English
Published: Elsevier 2017-08-01
Series:Nuclear Materials and Energy
Online Access:http://www.sciencedirect.com/science/article/pii/S2352179116301570
_version_ 1818440454401687552
author N.S. Klimov
V.L. Podkovyrov
I.B. Kupriyanov
J. Linke
R.A. Pitts
V.M. Safronov
D.V. Kovalenko
Th. Loewenhoff
C.P. Lungu
G. Pintsuk
G. De Temmerman
A.D. Muzichenko
A.A. Markin
P.N. Taratorkin
N.E. Zabirova
A.M. Zhitlukhin
author_facet N.S. Klimov
V.L. Podkovyrov
I.B. Kupriyanov
J. Linke
R.A. Pitts
V.M. Safronov
D.V. Kovalenko
Th. Loewenhoff
C.P. Lungu
G. Pintsuk
G. De Temmerman
A.D. Muzichenko
A.A. Markin
P.N. Taratorkin
N.E. Zabirova
A.M. Zhitlukhin
author_sort N.S. Klimov
collection DOAJ
description Material migration in ITER is expected to move beryllium (Be) eroded from the first wall primarily to the tungsten (W) divertor region and to magnetically shadowed areas of the wall itself. This paper is concerned with experimental study of Be layer response to ELM-like plasma pulses using the new QSPA-Be plasma gun (SRC RF TRINITI). The Be layers (1→50µm thick) are deposited on special castellated Be and W targets supplied by the ITER Organization using the Thermionic Vacuum Arc technique. Transient deuterium plasma pulses with duration ∼0.5ms were selected to provide absorbed energy densities on the plasma stream axis for a 30° target inclination of 0.2 and 0.5MJm−2, the first well below and the second near the Be melting point. This latter value is close to the prescribed maximum energy density for controlled ELMs on ITER. At 0.2MJm−2 on W, all Be layer thicknesses tested retain their integrity up to the maximum pulse number, except at local defects (flakes, holes and cracks) and on tile edges. At 0.5MJm−2 on W, Be layer melting and melt layer agglomeration are the main damage processes, they happen immediately in the first plasma impact. Melt layer movement was observed only near plasma facing edges. No significant melt splashing is observed in spite of high plasma pressure (higher than expected in ITER). Be layer of 10µm thick on Be target has higher resistance to plasma irradiation than 1 and 55µm, and retain their integrity up to the maximum pulse number at 0.2MJm−2. For 1µm and 55µm thick on Be target significant Be layer losses were observed at 0.2MJm−2. Keywords: ITER, High heat flux, Thermal shock, Beryllium, Tungsten, Coating
first_indexed 2024-12-14T18:12:37Z
format Article
id doaj.art-a802a24f5c994979bda9611b5b0e7e50
institution Directory Open Access Journal
issn 2352-1791
language English
last_indexed 2024-12-14T18:12:37Z
publishDate 2017-08-01
publisher Elsevier
record_format Article
series Nuclear Materials and Energy
spelling doaj.art-a802a24f5c994979bda9611b5b0e7e502022-12-21T22:52:16ZengElsevierNuclear Materials and Energy2352-17912017-08-0112433440Beryllium layer response to ITER-like ELM plasma pulses in QSPA-BeN.S. Klimov0V.L. Podkovyrov1I.B. Kupriyanov2J. Linke3R.A. Pitts4V.M. Safronov5D.V. Kovalenko6Th. Loewenhoff7C.P. Lungu8G. Pintsuk9G. De Temmerman10A.D. Muzichenko11A.A. Markin12P.N. Taratorkin13N.E. Zabirova14A.M. Zhitlukhin15SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 108840, Russia; National Research Nuclear University «MEPhI», Kashirskoe sh. 31, Moscow 115409, Russia; Corresponding author at: Troitsk, ul. Pushkovikh, vladenie 12, SRC RF TRINITI, Moscow 108840, Russian Federation.SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 108840, RussiaBochvar Institute, ul. Rogova, 5a, Moscow 123098, RussiaForschungszentrum Jülich GmbH, Jülich D-52425, GermanyITER Organization, Route de Vinon-sur-Verdon, CS 90 046, St. Paul Lez Durance Cedex, 13067, FranceInstitution Project center ITER, Akademika Kurchatova pl., 1, Moscow 123182, RussiaSRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 108840, RussiaForschungszentrum Jülich GmbH, Jülich D-52425, GermanyNational Institute for Laser, Plasma and Radiation Physics, Bucharest 077125, RomaniaForschungszentrum Jülich GmbH, Jülich D-52425, GermanyITER Organization, Route de Vinon-sur-Verdon, CS 90 046, St. Paul Lez Durance Cedex, 13067, FranceSRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 108840, RussiaBochvar Institute, ul. Rogova, 5a, Moscow 123098, RussiaBochvar Institute, ul. Rogova, 5a, Moscow 123098, RussiaBochvar Institute, ul. Rogova, 5a, Moscow 123098, RussiaSRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 108840, RussiaMaterial migration in ITER is expected to move beryllium (Be) eroded from the first wall primarily to the tungsten (W) divertor region and to magnetically shadowed areas of the wall itself. This paper is concerned with experimental study of Be layer response to ELM-like plasma pulses using the new QSPA-Be plasma gun (SRC RF TRINITI). The Be layers (1→50µm thick) are deposited on special castellated Be and W targets supplied by the ITER Organization using the Thermionic Vacuum Arc technique. Transient deuterium plasma pulses with duration ∼0.5ms were selected to provide absorbed energy densities on the plasma stream axis for a 30° target inclination of 0.2 and 0.5MJm−2, the first well below and the second near the Be melting point. This latter value is close to the prescribed maximum energy density for controlled ELMs on ITER. At 0.2MJm−2 on W, all Be layer thicknesses tested retain their integrity up to the maximum pulse number, except at local defects (flakes, holes and cracks) and on tile edges. At 0.5MJm−2 on W, Be layer melting and melt layer agglomeration are the main damage processes, they happen immediately in the first plasma impact. Melt layer movement was observed only near plasma facing edges. No significant melt splashing is observed in spite of high plasma pressure (higher than expected in ITER). Be layer of 10µm thick on Be target has higher resistance to plasma irradiation than 1 and 55µm, and retain their integrity up to the maximum pulse number at 0.2MJm−2. For 1µm and 55µm thick on Be target significant Be layer losses were observed at 0.2MJm−2. Keywords: ITER, High heat flux, Thermal shock, Beryllium, Tungsten, Coatinghttp://www.sciencedirect.com/science/article/pii/S2352179116301570
spellingShingle N.S. Klimov
V.L. Podkovyrov
I.B. Kupriyanov
J. Linke
R.A. Pitts
V.M. Safronov
D.V. Kovalenko
Th. Loewenhoff
C.P. Lungu
G. Pintsuk
G. De Temmerman
A.D. Muzichenko
A.A. Markin
P.N. Taratorkin
N.E. Zabirova
A.M. Zhitlukhin
Beryllium layer response to ITER-like ELM plasma pulses in QSPA-Be
Nuclear Materials and Energy
title Beryllium layer response to ITER-like ELM plasma pulses in QSPA-Be
title_full Beryllium layer response to ITER-like ELM plasma pulses in QSPA-Be
title_fullStr Beryllium layer response to ITER-like ELM plasma pulses in QSPA-Be
title_full_unstemmed Beryllium layer response to ITER-like ELM plasma pulses in QSPA-Be
title_short Beryllium layer response to ITER-like ELM plasma pulses in QSPA-Be
title_sort beryllium layer response to iter like elm plasma pulses in qspa be
url http://www.sciencedirect.com/science/article/pii/S2352179116301570
work_keys_str_mv AT nsklimov berylliumlayerresponsetoiterlikeelmplasmapulsesinqspabe
AT vlpodkovyrov berylliumlayerresponsetoiterlikeelmplasmapulsesinqspabe
AT ibkupriyanov berylliumlayerresponsetoiterlikeelmplasmapulsesinqspabe
AT jlinke berylliumlayerresponsetoiterlikeelmplasmapulsesinqspabe
AT rapitts berylliumlayerresponsetoiterlikeelmplasmapulsesinqspabe
AT vmsafronov berylliumlayerresponsetoiterlikeelmplasmapulsesinqspabe
AT dvkovalenko berylliumlayerresponsetoiterlikeelmplasmapulsesinqspabe
AT thloewenhoff berylliumlayerresponsetoiterlikeelmplasmapulsesinqspabe
AT cplungu berylliumlayerresponsetoiterlikeelmplasmapulsesinqspabe
AT gpintsuk berylliumlayerresponsetoiterlikeelmplasmapulsesinqspabe
AT gdetemmerman berylliumlayerresponsetoiterlikeelmplasmapulsesinqspabe
AT admuzichenko berylliumlayerresponsetoiterlikeelmplasmapulsesinqspabe
AT aamarkin berylliumlayerresponsetoiterlikeelmplasmapulsesinqspabe
AT pntaratorkin berylliumlayerresponsetoiterlikeelmplasmapulsesinqspabe
AT nezabirova berylliumlayerresponsetoiterlikeelmplasmapulsesinqspabe
AT amzhitlukhin berylliumlayerresponsetoiterlikeelmplasmapulsesinqspabe