Lasers for Satellite Uplinks and Downlinks
The use of Light Amplification by Stimulated Emission of Radiation (i.e., LASERs or lasers) by the U.S. Department of Defense is not new and includes laser weapons guidance, laser-aided measurements, and even lasers as weapons (e.g., Airborne Laser). Lasers in the support of telecommunications is al...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-01-01
|
Series: | Sci |
Subjects: | |
Online Access: | https://www.mdpi.com/2413-4155/3/1/4 |
_version_ | 1797542486111944704 |
---|---|
author | Mark Dmytryszyn Matthew Crook Timothy Sands |
author_facet | Mark Dmytryszyn Matthew Crook Timothy Sands |
author_sort | Mark Dmytryszyn |
collection | DOAJ |
description | The use of Light Amplification by Stimulated Emission of Radiation (i.e., LASERs or lasers) by the U.S. Department of Defense is not new and includes laser weapons guidance, laser-aided measurements, and even lasers as weapons (e.g., Airborne Laser). Lasers in the support of telecommunications is also not new. The use of laser light in fiber optics has shattered thoughts on communications bandwidth and throughput. Even the use of lasers in space is no longer new. Lasers are being used for satellite-to-satellite crosslinking. Laser communication can transmit orders-of-magnitude more data using orders-of-magnitude less power and can do so with minimal risk of exposure to the sending and receiving terminals. What <i>is</i> new is using lasers as the uplink and downlink between the terrestrial segment and the space segment of satellite systems. More so, the use of lasers to transmit and receive data between moving terrestrial segments (e.g., ships at sea, airplanes in flight) and geosynchronous satellites is burgeoning. This manuscript examines the technological maturation of employing lasers as the signal carrier for satellite communications linking terrestrial and space systems. <i>The purpose of the manuscript is to develop key performance parameters (KPPs) to inform the U.S. Department of Defense initial capabilities documents (ICDs) for near-future satellite acquisition and development.</i> By appreciating the history and technological challenges of employing lasers, rather than traditional radio frequency sources for satellite uplink and downlink signal carriers, this manuscript recommends ways for the U.S. Department of Defense to employ lasers to transmit and receive high bandwidth, and large-throughput data from moving platforms that need to retain low probabilities of detection, intercept, and exploit (e.g., carrier battle group transiting to a hostile area of operations, unmanned aerial vehicle collecting over adversary areas). The manuscript also intends to identify commercial sector early-adopter fields and those fields likely to adapt to laser employment for transmission and receipt. |
first_indexed | 2024-03-10T13:31:14Z |
format | Article |
id | doaj.art-a80f709313734473b4f5cd24eb8a5730 |
institution | Directory Open Access Journal |
issn | 2413-4155 |
language | English |
last_indexed | 2024-03-10T13:31:14Z |
publishDate | 2021-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Sci |
spelling | doaj.art-a80f709313734473b4f5cd24eb8a57302023-11-21T07:59:19ZengMDPI AGSci2413-41552021-01-0131410.3390/sci3010004Lasers for Satellite Uplinks and DownlinksMark Dmytryszyn0Matthew Crook1Timothy Sands2Space Systems Academic Group, Naval Postgraduate School, Monterey, CA 93940, USASpace Systems Academic Group, Naval Postgraduate School, Monterey, CA 93940, USADepartment of Mechanical Engineering (CVN), Columbia University, New York, NY 10027, USAThe use of Light Amplification by Stimulated Emission of Radiation (i.e., LASERs or lasers) by the U.S. Department of Defense is not new and includes laser weapons guidance, laser-aided measurements, and even lasers as weapons (e.g., Airborne Laser). Lasers in the support of telecommunications is also not new. The use of laser light in fiber optics has shattered thoughts on communications bandwidth and throughput. Even the use of lasers in space is no longer new. Lasers are being used for satellite-to-satellite crosslinking. Laser communication can transmit orders-of-magnitude more data using orders-of-magnitude less power and can do so with minimal risk of exposure to the sending and receiving terminals. What <i>is</i> new is using lasers as the uplink and downlink between the terrestrial segment and the space segment of satellite systems. More so, the use of lasers to transmit and receive data between moving terrestrial segments (e.g., ships at sea, airplanes in flight) and geosynchronous satellites is burgeoning. This manuscript examines the technological maturation of employing lasers as the signal carrier for satellite communications linking terrestrial and space systems. <i>The purpose of the manuscript is to develop key performance parameters (KPPs) to inform the U.S. Department of Defense initial capabilities documents (ICDs) for near-future satellite acquisition and development.</i> By appreciating the history and technological challenges of employing lasers, rather than traditional radio frequency sources for satellite uplink and downlink signal carriers, this manuscript recommends ways for the U.S. Department of Defense to employ lasers to transmit and receive high bandwidth, and large-throughput data from moving platforms that need to retain low probabilities of detection, intercept, and exploit (e.g., carrier battle group transiting to a hostile area of operations, unmanned aerial vehicle collecting over adversary areas). The manuscript also intends to identify commercial sector early-adopter fields and those fields likely to adapt to laser employment for transmission and receipt.https://www.mdpi.com/2413-4155/3/1/4telescopeslightweight telescope mirrorsadaptive opticsbetter resolutionincreased accuracymore bandwidth |
spellingShingle | Mark Dmytryszyn Matthew Crook Timothy Sands Lasers for Satellite Uplinks and Downlinks Sci telescopes lightweight telescope mirrors adaptive optics better resolution increased accuracy more bandwidth |
title | Lasers for Satellite Uplinks and Downlinks |
title_full | Lasers for Satellite Uplinks and Downlinks |
title_fullStr | Lasers for Satellite Uplinks and Downlinks |
title_full_unstemmed | Lasers for Satellite Uplinks and Downlinks |
title_short | Lasers for Satellite Uplinks and Downlinks |
title_sort | lasers for satellite uplinks and downlinks |
topic | telescopes lightweight telescope mirrors adaptive optics better resolution increased accuracy more bandwidth |
url | https://www.mdpi.com/2413-4155/3/1/4 |
work_keys_str_mv | AT markdmytryszyn lasersforsatelliteuplinksanddownlinks AT matthewcrook lasersforsatelliteuplinksanddownlinks AT timothysands lasersforsatelliteuplinksanddownlinks |