Topological Data Analysis for Eye Fundus Image Quality Assessment

The objective of this work is to perform image quality assessment (IQA) of eye fundus images in the context of digital fundoscopy with topological data analysis (TDA) and machine learning methods. Eye health remains inaccessible for a large amount of the global population. Digital tools that automiz...

Full description

Bibliographic Details
Main Authors: Gener José Avilés-Rodríguez, Juan Iván Nieto-Hipólito, María de los Ángeles Cosío-León, Gerardo Salvador Romo-Cárdenas, Juan de Dios Sánchez-López, Patricia Radilla-Chávez, Mabel Vázquez-Briseño
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Diagnostics
Subjects:
Online Access:https://www.mdpi.com/2075-4418/11/8/1322
_version_ 1827685516790726656
author Gener José Avilés-Rodríguez
Juan Iván Nieto-Hipólito
María de los Ángeles Cosío-León
Gerardo Salvador Romo-Cárdenas
Juan de Dios Sánchez-López
Patricia Radilla-Chávez
Mabel Vázquez-Briseño
author_facet Gener José Avilés-Rodríguez
Juan Iván Nieto-Hipólito
María de los Ángeles Cosío-León
Gerardo Salvador Romo-Cárdenas
Juan de Dios Sánchez-López
Patricia Radilla-Chávez
Mabel Vázquez-Briseño
author_sort Gener José Avilés-Rodríguez
collection DOAJ
description The objective of this work is to perform image quality assessment (IQA) of eye fundus images in the context of digital fundoscopy with topological data analysis (TDA) and machine learning methods. Eye health remains inaccessible for a large amount of the global population. Digital tools that automize the eye exam could be used to address this issue. IQA is a fundamental step in digital fundoscopy for clinical applications; it is one of the first steps in the preprocessing stages of computer-aided diagnosis (CAD) systems using eye fundus images. Images from the EyePACS dataset were used, and quality labels from previous works in the literature were selected. Cubical complexes were used to represent the images; the grayscale version was, then, used to calculate a persistent homology on the simplex and represented with persistence diagrams. Then, 30 vectorized topological descriptors were calculated from each image and used as input to a classification algorithm. Six different algorithms were tested for this study (SVM, decision tree, k-NN, random forest, logistic regression (LoGit), MLP). LoGit was selected and used for the classification of all images, given the low computational cost it carries. Performance results on the validation subset showed a global accuracy of 0.932, precision of 0.912 for label “quality” and 0.952 for label “no quality”, recall of 0.932 for label “quality” and 0.912 for label “no quality”, AUC of 0.980, F1 score of 0.932, and a Matthews correlation coefficient of 0.864. This work offers evidence for the use of topological methods for the process of quality assessment of eye fundus images, where a relatively small vector of characteristics (30 in this case) can enclose enough information for an algorithm to yield classification results useful in the clinical settings of a digital fundoscopy pipeline for CAD.
first_indexed 2024-03-10T08:53:51Z
format Article
id doaj.art-a8136a305081483987792ac3eec73533
institution Directory Open Access Journal
issn 2075-4418
language English
last_indexed 2024-03-10T08:53:51Z
publishDate 2021-07-01
publisher MDPI AG
record_format Article
series Diagnostics
spelling doaj.art-a8136a305081483987792ac3eec735332023-11-22T07:18:51ZengMDPI AGDiagnostics2075-44182021-07-01118132210.3390/diagnostics11081322Topological Data Analysis for Eye Fundus Image Quality AssessmentGener José Avilés-Rodríguez0Juan Iván Nieto-Hipólito1María de los Ángeles Cosío-León2Gerardo Salvador Romo-Cárdenas3Juan de Dios Sánchez-López4Patricia Radilla-Chávez5Mabel Vázquez-Briseño6Facultad de Ingeniería Arquitectura y Diseño, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana #3917, Playitas, Ensenada 22860, MexicoFacultad de Ingeniería Arquitectura y Diseño, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana #3917, Playitas, Ensenada 22860, MexicoDirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Ciudad Sahagún-Pachuca Km. 20, Ex-Hacienda de Santa Bárbara, Hidalgo 43830, MexicoFacultad de Ingeniería Arquitectura y Diseño, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana #3917, Playitas, Ensenada 22860, MexicoFacultad de Ingeniería Arquitectura y Diseño, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana #3917, Playitas, Ensenada 22860, MexicoEscuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Carretera Transpeninsular S/N, Valle Dorado, Ensenada 22890, MexicoFacultad de Ingeniería Arquitectura y Diseño, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana #3917, Playitas, Ensenada 22860, MexicoThe objective of this work is to perform image quality assessment (IQA) of eye fundus images in the context of digital fundoscopy with topological data analysis (TDA) and machine learning methods. Eye health remains inaccessible for a large amount of the global population. Digital tools that automize the eye exam could be used to address this issue. IQA is a fundamental step in digital fundoscopy for clinical applications; it is one of the first steps in the preprocessing stages of computer-aided diagnosis (CAD) systems using eye fundus images. Images from the EyePACS dataset were used, and quality labels from previous works in the literature were selected. Cubical complexes were used to represent the images; the grayscale version was, then, used to calculate a persistent homology on the simplex and represented with persistence diagrams. Then, 30 vectorized topological descriptors were calculated from each image and used as input to a classification algorithm. Six different algorithms were tested for this study (SVM, decision tree, k-NN, random forest, logistic regression (LoGit), MLP). LoGit was selected and used for the classification of all images, given the low computational cost it carries. Performance results on the validation subset showed a global accuracy of 0.932, precision of 0.912 for label “quality” and 0.952 for label “no quality”, recall of 0.932 for label “quality” and 0.912 for label “no quality”, AUC of 0.980, F1 score of 0.932, and a Matthews correlation coefficient of 0.864. This work offers evidence for the use of topological methods for the process of quality assessment of eye fundus images, where a relatively small vector of characteristics (30 in this case) can enclose enough information for an algorithm to yield classification results useful in the clinical settings of a digital fundoscopy pipeline for CAD.https://www.mdpi.com/2075-4418/11/8/1322persistent homologyeye fundus imagestopological data analysisimage quality assessmentcomputational ophthalmology
spellingShingle Gener José Avilés-Rodríguez
Juan Iván Nieto-Hipólito
María de los Ángeles Cosío-León
Gerardo Salvador Romo-Cárdenas
Juan de Dios Sánchez-López
Patricia Radilla-Chávez
Mabel Vázquez-Briseño
Topological Data Analysis for Eye Fundus Image Quality Assessment
Diagnostics
persistent homology
eye fundus images
topological data analysis
image quality assessment
computational ophthalmology
title Topological Data Analysis for Eye Fundus Image Quality Assessment
title_full Topological Data Analysis for Eye Fundus Image Quality Assessment
title_fullStr Topological Data Analysis for Eye Fundus Image Quality Assessment
title_full_unstemmed Topological Data Analysis for Eye Fundus Image Quality Assessment
title_short Topological Data Analysis for Eye Fundus Image Quality Assessment
title_sort topological data analysis for eye fundus image quality assessment
topic persistent homology
eye fundus images
topological data analysis
image quality assessment
computational ophthalmology
url https://www.mdpi.com/2075-4418/11/8/1322
work_keys_str_mv AT generjoseavilesrodriguez topologicaldataanalysisforeyefundusimagequalityassessment
AT juanivannietohipolito topologicaldataanalysisforeyefundusimagequalityassessment
AT mariadelosangelescosioleon topologicaldataanalysisforeyefundusimagequalityassessment
AT gerardosalvadorromocardenas topologicaldataanalysisforeyefundusimagequalityassessment
AT juandediossanchezlopez topologicaldataanalysisforeyefundusimagequalityassessment
AT patriciaradillachavez topologicaldataanalysisforeyefundusimagequalityassessment
AT mabelvazquezbriseno topologicaldataanalysisforeyefundusimagequalityassessment