Water Level Simulation in River Network by Data Assimilation Using Ensemble Kalman Filter

Water level simulation for complex water river networks is complex, and existing forecasting models are mainly used for single-channel rivers. In this paper, we present a new data assimilation model based on the ensemble Kalman filter (EnKF) for accurate water level simulation in complex river netwo...

Full description

Bibliographic Details
Main Authors: Yifan Chen, Feifeng Cao, Xiangyong Meng, Weiping Cheng
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/13/5/3043
Description
Summary:Water level simulation for complex water river networks is complex, and existing forecasting models are mainly used for single-channel rivers. In this paper, we present a new data assimilation model based on the ensemble Kalman filter (EnKF) for accurate water level simulation in complex river networks. The EnKF-based data model was tested on simulated water level data from a river network hydrodynamic model and optimized through parameter analysis. It was then applied to a real mountainous single-channel river and plain river network and compared with a data assimilation model based on the extended Kalman filter (EKF). The results showed that the EnKF-based model, with a medium ensemble sample size of 100–150, normal observation noise of 0.0001–0.01 m, and a high standard deviation of 0.01–0.1 m, outperformed the EKF-based model, with a 49% reduction in simulation errors, a 45% reduction in calculation cost, and a 43% reduction in filtering time. Furthermore, the EnKF-based data assimilation model predicted the water level in the plain river network better than the mountainous single-channel river. Around 5 to 8 h were required for data assimilation; afterwards, the model could make accurate predictions covering 20 to 30 h. The EnKF-based data assimilation model offers a potential solution for water level predictions in river networks.
ISSN:2076-3417