A review on the potential of polylactic acid based thermoplastic elastomer as filament material for fused deposition modelling

Currently, a range of sectors are implementing three-dimensional (3D) printing, which is a part of additive manufacturing (AM) technology via the fused deposition modelling (FDM) approach. As of now, various filament materials are available in the market and have their limitations. Thermoplastic ela...

Full description

Bibliographic Details
Main Authors: Luqman Musa, Nitiyah Krishna Kumar, Shayfull Zamree Abd Rahim, Mohamad Syahmie Mohamad Rasidi, Allan Edward Watson Rennie, Rozyanty Rahman, Armin Yousefi Kanani, Ahmad Azrem Azmi
Format: Article
Language:English
Published: Elsevier 2022-09-01
Series:Journal of Materials Research and Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2238785422012911
Description
Summary:Currently, a range of sectors are implementing three-dimensional (3D) printing, which is a part of additive manufacturing (AM) technology via the fused deposition modelling (FDM) approach. As of now, various filament materials are available in the market and have their limitations. Thermoplastic elastomer (TPE) blend as a filament material in 3D printing should be implemented to overcome the weakness of available filaments. TPE blend stands out due to its flexibility, thermoplastic-like processability, and renewability. Based on the findings, TPE blend filament can be made with polylactic acid (PLA) thermoplastic and elastomers such as natural rubber (NR) and epoxidized natural rubber (ENR). The TPE printed components will be flexible; tough with excellent thermal and mechanical properties. In this paper, the characteristics of TPE are being reviewed to show the potential of TPE material as filament.
ISSN:2238-7854