Soliton, breather and shockwave solutions of the Heisenberg and the T T ¯ $$ T\overline{T} $$ deformations of scalar field theories in 1+1 dimensions
Abstract In this note we study soliton, breather and shockwave solutions in certain two dimensional field theories. These include: (i) Heisenberg’s model suggested originally to describe the scattering of high energy nucleons (ii) T T ¯ $$ T\overline{T} $$ deformations of certain canonical scalar fi...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-04-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | https://doi.org/10.1007/JHEP04(2021)106 |
Summary: | Abstract In this note we study soliton, breather and shockwave solutions in certain two dimensional field theories. These include: (i) Heisenberg’s model suggested originally to describe the scattering of high energy nucleons (ii) T T ¯ $$ T\overline{T} $$ deformations of certain canonical scalar field theories with a potential. We find explicit soliton solutions of these models with sine-Gordon and Higgs-type potentials. We prove that the T T ¯ $$ T\overline{T} $$ deformation of a theory of a given potential does not correct the mass of the soliton of the undeformed one. We further conjecture the form of breather solutions of these models. We show that certain T T ¯ $$ T\overline{T} $$ deformed actions admit shockwave solutions that generalize those of Heisenberg’s Lagrangian. |
---|---|
ISSN: | 1029-8479 |