Petrography, geochemistry and tectonic setting of adakitic bodies in the Tighanab area and their relationship with iron skarn mineralization (southeast of Sarbisheh-east of Iran)

Introduction The Tighanab area is located in the Southern Khorasan province and 104km south-east of Sarbisheh, in the eastern part of Sistan suture zone (Tirrul et al., 1983). The Sistan suture zone has formed as a result of collision between the Lut and Afghan blokcs and its closure time is relate...

Full description

Bibliographic Details
Main Authors: Malihe Nakhaei, Seyyed Saeid Mohammadi
Format: Article
Language:fas
Published: Ferdowsi University of Mashhad 2021-02-01
Series:Journal of Economic Geology
Subjects:
Online Access:https://econg.um.ac.ir/article_39833.html?lang=en
_version_ 1819225785808977920
author Malihe Nakhaei
Seyyed Saeid Mohammadi
author_facet Malihe Nakhaei
Seyyed Saeid Mohammadi
author_sort Malihe Nakhaei
collection DOAJ
description Introduction The Tighanab area is located in the Southern Khorasan province and 104km south-east of Sarbisheh, in the eastern part of Sistan suture zone (Tirrul et al., 1983). The Sistan suture zone has formed as a result of collision between the Lut and Afghan blokcs and its closure time is related to upper Cretaceous era (Bröcker et al., 2013). Eocene-Oligocene magmatism in eastern Iran (Lut-Sistan) crop out as volcanic rocks, pyroclastic and subvolcanic rocks (Pang et al., 2013) which have caused skarn mineralization in some parts. The relationship between skarn mineralization and adakites has been discussed by various researchers (Lei et al., 2018). Skarn deposits and their associated Cenozoic plutonic rocks in Iran, have outcrops in northwest, central and southeast of the Urumiyeh-Dokhtar magmatic belt, Sabzevar-Dorouneh magmatic belt and the eastern Iran magmatic belt (Sepidbar et al., 2017). The Tighanab subvolcanic bodies play an important role in skarn mineralization. This research study is carried out for studying petrography, geochemistry and tectonic setting of subvolcanic bodies and their role in skarn mineralization since geochemistry and petrology of the mentioned masses have not been studied. Material and methods This research is based on field observations, thin sections, polished thin section studies and chemical analysis of samples. In this regard, 90 thin sections were prepared and studied by microscope. Then, 11 samples of subvolcanic rocks with the least alteration were selected. Then they were crushed and powdered. Next, they were analyzed by the ICP-ES method for major elements and the ICP-MS method for trace and rare earth elements. The magnetic susceptibility of the samples was measured by SM20 magnetic sensitivity device at university of Birjand. Results The study area is located in the eastern part of the Sistan suture zone and the Mahirud geological map (1:100000). Quartzdioritic subvolcanic rocks intruded the Paleocene-Eocene limestone and sandstone and formed iron skarn mineralization. The main textures in quartz diorite porphyry are porphyry with microgranular groundmass and poikilitic. Plagioclase, hornblende and quartz are the main constitutes of these rocks. Plagioclase phenocrysts have polysynthetic twinnig, zoning and resorption rim and are andesine and rarely oligoclase based on extinction angle. Different geochemical diagrams show correlation between the Tighanab igneous rocks and intrusions associated with iron skarns. Geochemical features as mean of SiO2(64.48%), Al2O3(16.68%), Sr(470ppm), Y(8.9ppm), Sr/Y(55.58), Yb(0.89ppm) and poor negative anomaly of Eu are representative of high silica adakitic features for these rocks. The amount of Mg#(55.48-68.1), Sr/Y(mean55.58), Th/La(mean0.32), La/YbN(4.2) and Th(mean1.8ppm) indicate oceanic crust melting with garnet-amphibolite composition to generation of adakitic magma. Discussion Field evidence, mineralogy, and magnetic susceptibility measurements show that granitoids of the Tighanab area belong to the magnetite series. Based on tectonic discrimination diagrams, the intermediate samples of the Tighanab area are located in the range of VAG and VAG + Syn-COLG. The studied rocks show depletion of HFSE such as Ti, P, Nb, Yb, Y and enrichment in LILE that indicates their association with the subduction environment. Negative anomaly of HFSE may be a result of contamination of magma by crustal materials during ascent and emplacement in subduction zones. Comparison of some major and trace elements of Tighanab samples with adakites indicated that these rocks have high silica adakitic nature. Geochemical evidence shows that the studied rocks are similar to the rocks associated with iron skarns. Some geochemical characteristics such as HREE and HFSE depletion, high Sr, Sr/Y and (Gd/Yb)N>1 and poor negative anomaly of Eu in the studied samples, indicate that the adakitic magma has been formed at pressures above the plagioclase stability. The geochemical characteristics of the studied samples, such as low Y and high Sr/Y ratio, indicate the presence of garnet in the origin of these rocks (Mao et al., 2018). Trace and rare element diagrams show that adikatic magma of the Tighanab area subvolcanic rocks have been produced by melting of the oceanic slab. Adakitic rocks of the Tighanab area have been formed from a source with 10 to 25% garnet amphibolites composition. References Tirrul, R., Bell, L.R., Griffis, R.J. and Camp, V.E., 1983. The Sistan suture zone of eastern Iran. Geological Society of America Bulletin, 94(1): 134–150. Bröcker, M., Rad, G.F., Burgess, R., Theunissen, S., Paderin, I., Rodionov, N. and Salimi, Z., 2013. New age constraints for the geodynamic evolution of the Sistan Suture Zone, eastern Iran. Lithos, 170–171: 17–34. Pang, K.N., Chung, S.L., Zarrinkoub, M.H., Khatib, M.M., Mohammadi, S.S., Chiu, H.Y., Chu, H.Ch., Lee, H.Y. and Lo, C.H., 2013. Eocene–Oligocene post-collisional magmatism in the Lut–Sistan region, eastern Iran: magma genesis and tectonic implications. Lithos, 180–181: 234–251. Mao, Q., Yu, M., Xiao, W., Windley, B.F., Li, Y., Wei, X., Zho, J. and Lü, X., 2018. Skarn–mineralized porphyry adakites in the Harlik arc at Kalatage, E. Tianshan (NW China): Slab melting in the Devonian–early Carboniferous in the southern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 153: 365–378. Lei, X.F., Duan, D.F., Jiang, S.Y. and Xiong, S.F., 2018. Ore–forming fluids and isotopic (HOCS–Pb) characteristics of the Fujiashan–Longjiaoshan skarn W–Cu–(Mo) deposit in the Edong District of Hubei Province, China. Ore Geology Reviews, 102: 386–405. Sepidbar, F., Mirnejad, H., Li, J.W., Wei, C., George, L.L. and Burlinson, K., 2017. Mineral geochemistry of the Sangan skarn deposit, NE Iran: Implication for the evolution of hydrothermal fluid. Chemie der Erde-Geochemistry, 77(3): 399–419.
first_indexed 2024-12-23T10:15:07Z
format Article
id doaj.art-a81e8c2d4b334cfbb0d16b49fa5314c7
institution Directory Open Access Journal
issn 2008-7306
language fas
last_indexed 2024-12-23T10:15:07Z
publishDate 2021-02-01
publisher Ferdowsi University of Mashhad
record_format Article
series Journal of Economic Geology
spelling doaj.art-a81e8c2d4b334cfbb0d16b49fa5314c72022-12-21T17:50:51ZfasFerdowsi University of MashhadJournal of Economic Geology2008-73062021-02-0112444947010.22067/ECONG.V12I4.81783Petrography, geochemistry and tectonic setting of adakitic bodies in the Tighanab area and their relationship with iron skarn mineralization (southeast of Sarbisheh-east of Iran)Malihe Nakhaei0Seyyed Saeid Mohammadi 1Department of Mining Engineering, Birjand University of Technology, Birjand, IranDepartment of Geology, Faculty of Sciences, University of Birjand, Birjand, IranIntroduction The Tighanab area is located in the Southern Khorasan province and 104km south-east of Sarbisheh, in the eastern part of Sistan suture zone (Tirrul et al., 1983). The Sistan suture zone has formed as a result of collision between the Lut and Afghan blokcs and its closure time is related to upper Cretaceous era (Bröcker et al., 2013). Eocene-Oligocene magmatism in eastern Iran (Lut-Sistan) crop out as volcanic rocks, pyroclastic and subvolcanic rocks (Pang et al., 2013) which have caused skarn mineralization in some parts. The relationship between skarn mineralization and adakites has been discussed by various researchers (Lei et al., 2018). Skarn deposits and their associated Cenozoic plutonic rocks in Iran, have outcrops in northwest, central and southeast of the Urumiyeh-Dokhtar magmatic belt, Sabzevar-Dorouneh magmatic belt and the eastern Iran magmatic belt (Sepidbar et al., 2017). The Tighanab subvolcanic bodies play an important role in skarn mineralization. This research study is carried out for studying petrography, geochemistry and tectonic setting of subvolcanic bodies and their role in skarn mineralization since geochemistry and petrology of the mentioned masses have not been studied. Material and methods This research is based on field observations, thin sections, polished thin section studies and chemical analysis of samples. In this regard, 90 thin sections were prepared and studied by microscope. Then, 11 samples of subvolcanic rocks with the least alteration were selected. Then they were crushed and powdered. Next, they were analyzed by the ICP-ES method for major elements and the ICP-MS method for trace and rare earth elements. The magnetic susceptibility of the samples was measured by SM20 magnetic sensitivity device at university of Birjand. Results The study area is located in the eastern part of the Sistan suture zone and the Mahirud geological map (1:100000). Quartzdioritic subvolcanic rocks intruded the Paleocene-Eocene limestone and sandstone and formed iron skarn mineralization. The main textures in quartz diorite porphyry are porphyry with microgranular groundmass and poikilitic. Plagioclase, hornblende and quartz are the main constitutes of these rocks. Plagioclase phenocrysts have polysynthetic twinnig, zoning and resorption rim and are andesine and rarely oligoclase based on extinction angle. Different geochemical diagrams show correlation between the Tighanab igneous rocks and intrusions associated with iron skarns. Geochemical features as mean of SiO2(64.48%), Al2O3(16.68%), Sr(470ppm), Y(8.9ppm), Sr/Y(55.58), Yb(0.89ppm) and poor negative anomaly of Eu are representative of high silica adakitic features for these rocks. The amount of Mg#(55.48-68.1), Sr/Y(mean55.58), Th/La(mean0.32), La/YbN(4.2) and Th(mean1.8ppm) indicate oceanic crust melting with garnet-amphibolite composition to generation of adakitic magma. Discussion Field evidence, mineralogy, and magnetic susceptibility measurements show that granitoids of the Tighanab area belong to the magnetite series. Based on tectonic discrimination diagrams, the intermediate samples of the Tighanab area are located in the range of VAG and VAG + Syn-COLG. The studied rocks show depletion of HFSE such as Ti, P, Nb, Yb, Y and enrichment in LILE that indicates their association with the subduction environment. Negative anomaly of HFSE may be a result of contamination of magma by crustal materials during ascent and emplacement in subduction zones. Comparison of some major and trace elements of Tighanab samples with adakites indicated that these rocks have high silica adakitic nature. Geochemical evidence shows that the studied rocks are similar to the rocks associated with iron skarns. Some geochemical characteristics such as HREE and HFSE depletion, high Sr, Sr/Y and (Gd/Yb)N>1 and poor negative anomaly of Eu in the studied samples, indicate that the adakitic magma has been formed at pressures above the plagioclase stability. The geochemical characteristics of the studied samples, such as low Y and high Sr/Y ratio, indicate the presence of garnet in the origin of these rocks (Mao et al., 2018). Trace and rare element diagrams show that adikatic magma of the Tighanab area subvolcanic rocks have been produced by melting of the oceanic slab. Adakitic rocks of the Tighanab area have been formed from a source with 10 to 25% garnet amphibolites composition. References Tirrul, R., Bell, L.R., Griffis, R.J. and Camp, V.E., 1983. The Sistan suture zone of eastern Iran. Geological Society of America Bulletin, 94(1): 134–150. Bröcker, M., Rad, G.F., Burgess, R., Theunissen, S., Paderin, I., Rodionov, N. and Salimi, Z., 2013. New age constraints for the geodynamic evolution of the Sistan Suture Zone, eastern Iran. Lithos, 170–171: 17–34. Pang, K.N., Chung, S.L., Zarrinkoub, M.H., Khatib, M.M., Mohammadi, S.S., Chiu, H.Y., Chu, H.Ch., Lee, H.Y. and Lo, C.H., 2013. Eocene–Oligocene post-collisional magmatism in the Lut–Sistan region, eastern Iran: magma genesis and tectonic implications. Lithos, 180–181: 234–251. Mao, Q., Yu, M., Xiao, W., Windley, B.F., Li, Y., Wei, X., Zho, J. and Lü, X., 2018. Skarn–mineralized porphyry adakites in the Harlik arc at Kalatage, E. Tianshan (NW China): Slab melting in the Devonian–early Carboniferous in the southern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 153: 365–378. Lei, X.F., Duan, D.F., Jiang, S.Y. and Xiong, S.F., 2018. Ore–forming fluids and isotopic (HOCS–Pb) characteristics of the Fujiashan–Longjiaoshan skarn W–Cu–(Mo) deposit in the Edong District of Hubei Province, China. Ore Geology Reviews, 102: 386–405. Sepidbar, F., Mirnejad, H., Li, J.W., Wei, C., George, L.L. and Burlinson, K., 2017. Mineral geochemistry of the Sangan skarn deposit, NE Iran: Implication for the evolution of hydrothermal fluid. Chemie der Erde-Geochemistry, 77(3): 399–419.https://econg.um.ac.ir/article_39833.html?lang=enquartz diorite porphyryi- type granitoidhigh silica adakiteskarnthighanabsistan suture zone
spellingShingle Malihe Nakhaei
Seyyed Saeid Mohammadi
Petrography, geochemistry and tectonic setting of adakitic bodies in the Tighanab area and their relationship with iron skarn mineralization (southeast of Sarbisheh-east of Iran)
Journal of Economic Geology
quartz diorite porphyry
i- type granitoid
high silica adakite
skarn
thighanab
sistan suture zone
title Petrography, geochemistry and tectonic setting of adakitic bodies in the Tighanab area and their relationship with iron skarn mineralization (southeast of Sarbisheh-east of Iran)
title_full Petrography, geochemistry and tectonic setting of adakitic bodies in the Tighanab area and their relationship with iron skarn mineralization (southeast of Sarbisheh-east of Iran)
title_fullStr Petrography, geochemistry and tectonic setting of adakitic bodies in the Tighanab area and their relationship with iron skarn mineralization (southeast of Sarbisheh-east of Iran)
title_full_unstemmed Petrography, geochemistry and tectonic setting of adakitic bodies in the Tighanab area and their relationship with iron skarn mineralization (southeast of Sarbisheh-east of Iran)
title_short Petrography, geochemistry and tectonic setting of adakitic bodies in the Tighanab area and their relationship with iron skarn mineralization (southeast of Sarbisheh-east of Iran)
title_sort petrography geochemistry and tectonic setting of adakitic bodies in the tighanab area and their relationship with iron skarn mineralization southeast of sarbisheh east of iran
topic quartz diorite porphyry
i- type granitoid
high silica adakite
skarn
thighanab
sistan suture zone
url https://econg.um.ac.ir/article_39833.html?lang=en
work_keys_str_mv AT malihenakhaei petrographygeochemistryandtectonicsettingofadakiticbodiesinthetighanabareaandtheirrelationshipwithironskarnmineralizationsoutheastofsarbisheheastofiran
AT seyyedsaeidmohammadi petrographygeochemistryandtectonicsettingofadakiticbodiesinthetighanabareaandtheirrelationshipwithironskarnmineralizationsoutheastofsarbisheheastofiran