Clonal abundance patterns in hematopoiesis: Mathematical modeling and parameter estimation

Hematopoiesis has been studied via stem cell labeling using barcodes, viral integration sites (VISs), or in situ methods. Subsequent proliferation and differentiation preserve the tag identity, thus defining a clone of mature cells across multiple cell type or lineages. By tracking the population of...

Full description

Bibliographic Details
Main Authors: Yunbei Pan, Maria R. D’Orsogna, Min Tang, Thomas Stiehl, Tom Chou
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-02-01
Series:Frontiers in Systems Biology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fsysb.2023.893366/full
_version_ 1811168358930841600
author Yunbei Pan
Yunbei Pan
Maria R. D’Orsogna
Maria R. D’Orsogna
Min Tang
Thomas Stiehl
Tom Chou
Tom Chou
author_facet Yunbei Pan
Yunbei Pan
Maria R. D’Orsogna
Maria R. D’Orsogna
Min Tang
Thomas Stiehl
Tom Chou
Tom Chou
author_sort Yunbei Pan
collection DOAJ
description Hematopoiesis has been studied via stem cell labeling using barcodes, viral integration sites (VISs), or in situ methods. Subsequent proliferation and differentiation preserve the tag identity, thus defining a clone of mature cells across multiple cell type or lineages. By tracking the population of clones, measured within samples taken at discrete time points, we infer physiological parameters associated with a hybrid stochastic-deterministic mathematical model of hematopoiesis. We analyze clone population data from Koelle et al. (Koelle et al., 2017) and compare the states of clones (mean and variance of their abundances) and the state-space density of clones with the corresponding quantities predicted from our model. Comparing our model to the tagged granulocyte populations, we find parameters (stem cell carrying capacity, stem cell differentiation rates, and the proliferative potential of progenitor cells, and sample sizes) that provide reasonable fits in three out of four animals. Even though some observed features cannot be quantitatively reproduced by our model, our analyses provides insight into how model parameters influence the underlying mechanisms in hematopoiesis. We discuss additional mechanisms not incorporated in our model.
first_indexed 2024-04-10T16:24:52Z
format Article
id doaj.art-a8265ca37027489a9de972e9bae799fe
institution Directory Open Access Journal
issn 2674-0702
language English
last_indexed 2024-04-10T16:24:52Z
publishDate 2023-02-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Systems Biology
spelling doaj.art-a8265ca37027489a9de972e9bae799fe2023-02-09T07:05:08ZengFrontiers Media S.A.Frontiers in Systems Biology2674-07022023-02-01310.3389/fsysb.2023.893366893366Clonal abundance patterns in hematopoiesis: Mathematical modeling and parameter estimationYunbei Pan0Yunbei Pan1Maria R. D’Orsogna2Maria R. D’Orsogna3Min Tang4Thomas Stiehl5Tom Chou6Tom Chou7Department of Computational Medicine, UCLA, Los Angeles, CA, United StatesDepartment of Mathematics, California State University at Northridge, Los Angeles, CA, United StatesDepartment of Computational Medicine, UCLA, Los Angeles, CA, United StatesDepartment of Mathematics, California State University at Northridge, Los Angeles, CA, United StatesInstitute of Natural Sciences, Shanghai Jiaotong University, Shanghai, ChinaInstitute of Computational Biomedicine, RWTH Aachen University, Aachen, GermanyDepartment of Computational Medicine, UCLA, Los Angeles, CA, United StatesDepartment of Mathematics, UCLA, Los Angeles, CA, United StatesHematopoiesis has been studied via stem cell labeling using barcodes, viral integration sites (VISs), or in situ methods. Subsequent proliferation and differentiation preserve the tag identity, thus defining a clone of mature cells across multiple cell type or lineages. By tracking the population of clones, measured within samples taken at discrete time points, we infer physiological parameters associated with a hybrid stochastic-deterministic mathematical model of hematopoiesis. We analyze clone population data from Koelle et al. (Koelle et al., 2017) and compare the states of clones (mean and variance of their abundances) and the state-space density of clones with the corresponding quantities predicted from our model. Comparing our model to the tagged granulocyte populations, we find parameters (stem cell carrying capacity, stem cell differentiation rates, and the proliferative potential of progenitor cells, and sample sizes) that provide reasonable fits in three out of four animals. Even though some observed features cannot be quantitatively reproduced by our model, our analyses provides insight into how model parameters influence the underlying mechanisms in hematopoiesis. We discuss additional mechanisms not incorporated in our model.https://www.frontiersin.org/articles/10.3389/fsysb.2023.893366/fullstem cellshematopoiesisbarcodesclonal trackingdifferentiation
spellingShingle Yunbei Pan
Yunbei Pan
Maria R. D’Orsogna
Maria R. D’Orsogna
Min Tang
Thomas Stiehl
Tom Chou
Tom Chou
Clonal abundance patterns in hematopoiesis: Mathematical modeling and parameter estimation
Frontiers in Systems Biology
stem cells
hematopoiesis
barcodes
clonal tracking
differentiation
title Clonal abundance patterns in hematopoiesis: Mathematical modeling and parameter estimation
title_full Clonal abundance patterns in hematopoiesis: Mathematical modeling and parameter estimation
title_fullStr Clonal abundance patterns in hematopoiesis: Mathematical modeling and parameter estimation
title_full_unstemmed Clonal abundance patterns in hematopoiesis: Mathematical modeling and parameter estimation
title_short Clonal abundance patterns in hematopoiesis: Mathematical modeling and parameter estimation
title_sort clonal abundance patterns in hematopoiesis mathematical modeling and parameter estimation
topic stem cells
hematopoiesis
barcodes
clonal tracking
differentiation
url https://www.frontiersin.org/articles/10.3389/fsysb.2023.893366/full
work_keys_str_mv AT yunbeipan clonalabundancepatternsinhematopoiesismathematicalmodelingandparameterestimation
AT yunbeipan clonalabundancepatternsinhematopoiesismathematicalmodelingandparameterestimation
AT mariardorsogna clonalabundancepatternsinhematopoiesismathematicalmodelingandparameterestimation
AT mariardorsogna clonalabundancepatternsinhematopoiesismathematicalmodelingandparameterestimation
AT mintang clonalabundancepatternsinhematopoiesismathematicalmodelingandparameterestimation
AT thomasstiehl clonalabundancepatternsinhematopoiesismathematicalmodelingandparameterestimation
AT tomchou clonalabundancepatternsinhematopoiesismathematicalmodelingandparameterestimation
AT tomchou clonalabundancepatternsinhematopoiesismathematicalmodelingandparameterestimation