Исследование каскадных нео-фаззи нейронных сетей в задачах прогнозирования в финансовой сфере

Рассмотрена проблема прогнозирования финансовых процессов на рынках ценных бумаг. Для ее решения предложено применение каскадных нео-фаззи нейронных сетей. Описана архитектура этих сетей, рассмотрены алгоритмы обучения — градиентный и Уидроу-Хоффа. Рассмотрена проблема синтеза структуры нео-фаззи ка...

Full description

Bibliographic Details
Main Author: Yu. P. Zaychenko
Format: Article
Language:Ukrainian
Published: Igor Sikorsky Kyiv Polytechnic Institute 2014-09-01
Series:Sistemnì Doslìdženâ ta Informacìjnì Tehnologìï
Online Access:http://journal.iasa.kpi.ua/article/view/32561
Description
Summary:Рассмотрена проблема прогнозирования финансовых процессов на рынках ценных бумаг. Для ее решения предложено применение каскадных нео-фаззи нейронных сетей. Описана архитектура этих сетей, рассмотрены алгоритмы обучения — градиентный и Уидроу-Хоффа. Рассмотрена проблема синтеза структуры нео-фаззи каскадной сети и предложен алгоритм МГУА для ее решения. Проведены экспериментальные исследования точности прогнозирования биржевых индексов с применением указанных методов обучения в зависимости от числа каскадов, числа входных переменных и их лингвистичеcких значений и оценена их эффективность. Проведенные исследования показали, что каждый алгоритм имеет свои сильные и слабые стороны. Градиентный метод может давать более точные прогнозы, но при этом время его работы достаточно большое. Алгоритм Уидроу-Хоффа, наоборот, дает прогноз за очень короткое время, но имеет довольно большие отклонения от реальных значений. В целом, каскадная нео-фаззи нейронная сеть является хорошим инструментом для прогнозирования финансовых процессов на фондовых рынках в условиях неопределенности и неполноты информации. При этом ее прогноз значительно точнее в сравнении с классическими нечеткими нейронными сетями ANFIS и TSK, а также ННС с выводом Мамдани.  
ISSN:1681-6048
2308-8893