A Comparative Study of SIFT and its Variants

SIFT is an image local feature description algorithm based on scale-space. Due to its strong matching ability, SIFT has many applications in different fields, such as image retrieval, image stitching, and machine vision. After SIFT was proposed, researchers have never stopped tuning it. The improved...

Full description

Bibliographic Details
Main Authors: Wu Jian, Cui Zhiming, Sheng Victor S., Zhao Pengpeng, Su Dongliang, Gong Shengrong
Format: Article
Language:English
Published: Sciendo 2013-06-01
Series:Measurement Science Review
Subjects:
Online Access:https://doi.org/10.2478/msr-2013-0021
Description
Summary:SIFT is an image local feature description algorithm based on scale-space. Due to its strong matching ability, SIFT has many applications in different fields, such as image retrieval, image stitching, and machine vision. After SIFT was proposed, researchers have never stopped tuning it. The improved algorithms that have drawn a lot of attention are PCA-SIFT, GSIFT, CSIFT, SURF and ASIFT. In this paper, we first systematically analyze SIFT and its variants. Then, we evaluate their performance in different situations: scale change, rotation change, blur change, illumination change, and affine change. The experimental results show that each has its own advantages. SIFT and CSIFT perform the best under scale and rotation change. CSIFT improves SIFT under blur change and affine change, but not illumination change. GSIFT performs the best under blur change and illumination change. ASIFT performs the best under affine change. PCA-SIFT is always the second in different situations. SURF performs the worst in different situations, but runs the fastest.
ISSN:1335-8871