Current compensation for material consumption of cobalt self-powered neutron detector

Co Self-Powered Neutron Detector (SPND) is confronted with the problem of material consumption, which causes the response current can neither reflect the change of neutron flux in time nor be proportional to the neutron flux. In this paper, a deconvolution-based method is established to solve this p...

Full description

Bibliographic Details
Main Authors: Xinxin Liu, Zhongwei Wang, Qingmin Zhang, Bangjie Deng, Yaobin Niu
Format: Article
Language:English
Published: Elsevier 2020-04-01
Series:Nuclear Engineering and Technology
Online Access:http://www.sciencedirect.com/science/article/pii/S1738573319302086
Description
Summary:Co Self-Powered Neutron Detector (SPND) is confronted with the problem of material consumption, which causes the response current can neither reflect the change of neutron flux in time nor be proportional to the neutron flux. In this paper, a deconvolution-based method is established to solve this problem. First of all, a step signal of neutron flux is taken as an example to analyze its performance. When the material consumption of Co SPND is 10%, after compensation, the response current can be in correspondence of neutron flux. Finally, the effects of this model in different Signal-to-Noise Ratio are analyzed, which fully confirms the truth of its excellent performance for compensating Co SPND's signal. Keywords: Self-powered neutron detector, Material consumption, De-convolution model
ISSN:1738-5733