Sleep physiology in toddlers: Effects of missing a nap on subsequent night sleep

The shift from a biphasic to a monophasic sleep schedule is a fundamental milestone in early childhood. This transition, however, may result in periods of acute sleep loss as children may nap on some but not all days. Although data indicating the behavioral consequences of nap deprivation in young c...

Full description

Bibliographic Details
Main Authors: Jonathan M. Lassonde, Thomas Rusterholz, Salome Kurth, Allyson M. Schumacher, Peter Achermann, Monique K. LeBourgeois
Format: Article
Language:English
Published: Elsevier 2016-10-01
Series:Neurobiology of Sleep and Circadian Rhythms
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2451994416300050
Description
Summary:The shift from a biphasic to a monophasic sleep schedule is a fundamental milestone in early childhood. This transition, however, may result in periods of acute sleep loss as children may nap on some but not all days. Although data indicating the behavioral consequences of nap deprivation in young children are accumulating, little is known about changes to sleep neurophysiology following daytime sleep loss. This study addresses this gap in knowledge by examining the effects of acute nap deprivation on subsequent nighttime sleep electroencephalographic (EEG) parameters in toddlers. Healthy children (n=25; 11 males; ages 30–36 months) followed a strict sleep schedule for ≥5 days before sleep EEG recordings performed on 2 non-consecutive days: one after 13 h of prior wakefulness and another at the same clock time but preceded by a daytime nap. Total slow-wave energy (SWE) was computed as cumulative slow-wave activity (SWA; EEG power in 0.75–4.5 Hz range) over time. Nap and subsequent night SWE were added and compared to SWE of the night after a missed nap. During the night following a missed nap, children fell asleep faster (11.9±8.7 min versus 37.3±22.1 min; d=1.6, p=0.01), slept longer (10.1±0.7 h versus 9.6±0.6 h; d=0.7, p<0.01) and exhibited greater SWA (133.3±37.5% versus 93.0±4.7%; d=0.9, p<0.01) compared to a night after a daytime nap. SWE for combined nap and subsequent night sleep did not significantly differ from the night following nap deprivation (12141.1±3872.9 μV²*h versus 11,588±3270.8 μV²*h; d=0.6, p=0.12). However, compared to a night following a missed nap, children experienced greater time in bed (13.0±0.8 h versus 10.9±0.5 h; d=3.1, p<0.01) and total sleep time (11.2±0.8 h versus 10.1±0.7 h; d=1.4, p<0.01). Shorter sleep latency, longer sleep duration, and increased SWA in the night following a missed nap indicate that toddlers experience a physiologically meaningful homeostatic challenge after prolonged wakefulness. Whether toddlers fully recover from missing a daytime nap in the subsequent night necessitates further examination of daytime functioning.
ISSN:2451-9944