Some properties of fractional burgers equation

The fractional generalization of a one‐dimensional Burgers equationwith initial conditions ɸ(x, 0) = ɸ0(x);  ɸt(x,0) = ψ0 (x), where ɸ = ɸ(x,t) ∈ C2(Ω): ɸt = δɸ/δt; aDx p is the Riemann‐Liouville fractional derivative of the order p; Ω = (x,t) : x ∈ E 1, t > 0; and the explicit form of a particul...

Full description

Bibliographic Details
Main Author: P. Miškinis
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2002-06-01
Series:Mathematical Modelling and Analysis
Subjects:
-
Online Access:https://journals.vgtu.lt/index.php/MMA/article/view/9838
_version_ 1818765347377905664
author P. Miškinis
author_facet P. Miškinis
author_sort P. Miškinis
collection DOAJ
description The fractional generalization of a one‐dimensional Burgers equationwith initial conditions ɸ(x, 0) = ɸ0(x);  ɸt(x,0) = ψ0 (x), where ɸ = ɸ(x,t) ∈ C2(Ω): ɸt = δɸ/δt; aDx p is the Riemann‐Liouville fractional derivative of the order p; Ω = (x,t) : x ∈ E 1, t > 0; and the explicit form of a particular analytical solution are suggested. Existing of traveling wave solution and conservation laws are considered. The relation with Burgers equation of integer order and properties of fractional generalization of the Hopf‐Cole transformation are discussed. Kai kurios trupmeninės Biurgerso lygtie savybės Santrauka Pasiublytas trupmeninis vienmates Biurgerso lygties apibendrinimassu pradinemis salygomis ɸ(x, 0) = ɸ0(x); ɸt(x,0) = ψ0 (x), kur ɸ = ɸ(x,t) ∈ C2(Ω): δɸ/δt; aDx p yra Rymano bei Liuvilio trupmenine p eiles išvestine; Ω = (x,t) : x ∈ E 1, t > 0;: bei šios lygties atskiras analitinis sprendinys. Nagrinejamas impulso bei energijos tvermes desniu atitinkami apibendrinimai, saryšis su paprasta Biurgerso lygtimi ir trupmenines Hopfo bei Koulo transformacijos savybes.  First Published Online: 14 Oct 2010
first_indexed 2024-12-18T08:16:39Z
format Article
id doaj.art-a844539c4b3b41f2ab4ab6c1ce16c47a
institution Directory Open Access Journal
issn 1392-6292
1648-3510
language English
last_indexed 2024-12-18T08:16:39Z
publishDate 2002-06-01
publisher Vilnius Gediminas Technical University
record_format Article
series Mathematical Modelling and Analysis
spelling doaj.art-a844539c4b3b41f2ab4ab6c1ce16c47a2022-12-21T21:14:48ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35102002-06-017110.3846/13926292.2002.9637187Some properties of fractional burgers equationP. Miškinis0Department of Physics, Faculty of Fundamental Sciences , Vilnius Gediminas Technical University , Sauletekio Ave 11, Vilnius, LT‐2040, LithuaniaThe fractional generalization of a one‐dimensional Burgers equationwith initial conditions ɸ(x, 0) = ɸ0(x);  ɸt(x,0) = ψ0 (x), where ɸ = ɸ(x,t) ∈ C2(Ω): ɸt = δɸ/δt; aDx p is the Riemann‐Liouville fractional derivative of the order p; Ω = (x,t) : x ∈ E 1, t > 0; and the explicit form of a particular analytical solution are suggested. Existing of traveling wave solution and conservation laws are considered. The relation with Burgers equation of integer order and properties of fractional generalization of the Hopf‐Cole transformation are discussed. Kai kurios trupmeninės Biurgerso lygtie savybės Santrauka Pasiublytas trupmeninis vienmates Biurgerso lygties apibendrinimassu pradinemis salygomis ɸ(x, 0) = ɸ0(x); ɸt(x,0) = ψ0 (x), kur ɸ = ɸ(x,t) ∈ C2(Ω): δɸ/δt; aDx p yra Rymano bei Liuvilio trupmenine p eiles išvestine; Ω = (x,t) : x ∈ E 1, t > 0;: bei šios lygties atskiras analitinis sprendinys. Nagrinejamas impulso bei energijos tvermes desniu atitinkami apibendrinimai, saryšis su paprasta Biurgerso lygtimi ir trupmenines Hopfo bei Koulo transformacijos savybes.  First Published Online: 14 Oct 2010https://journals.vgtu.lt/index.php/MMA/article/view/9838-
spellingShingle P. Miškinis
Some properties of fractional burgers equation
Mathematical Modelling and Analysis
-
title Some properties of fractional burgers equation
title_full Some properties of fractional burgers equation
title_fullStr Some properties of fractional burgers equation
title_full_unstemmed Some properties of fractional burgers equation
title_short Some properties of fractional burgers equation
title_sort some properties of fractional burgers equation
topic -
url https://journals.vgtu.lt/index.php/MMA/article/view/9838
work_keys_str_mv AT pmiskinis somepropertiesoffractionalburgersequation