High-Performance Asymmetric Optical Transmission Based on a Dielectric–Metal Metasurface

Asymmetric optical transmission plays a key role in many optical systems. In this work, we propose and numerically demonstrate a dielectric–metal metasurface that can achieve high-performance asymmetric transmission for linearly polarized light in the near-infrared region. Most notably, it supports...

Full description

Bibliographic Details
Main Authors: Wenbing Liu, Lirong Huang, Jifei Ding, Chenkai Xie, Yi Luo, Wei Hong
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/11/9/2410
Description
Summary:Asymmetric optical transmission plays a key role in many optical systems. In this work, we propose and numerically demonstrate a dielectric–metal metasurface that can achieve high-performance asymmetric transmission for linearly polarized light in the near-infrared region. Most notably, it supports a forward transmittance peak (with a transmittance of 0.70) and a backward transmittance dip (with a transmittance of 0.07) at the same wavelength of 922 nm, which significantly enhances operation bandwidth and the contrast ratio between forward and backward transmittances. Mechanism analyses reveal that the forward transmittance peak is caused by the unidirectional excitation of surface plasmon polaritons and the first Kerker condition, whereas the backward transmittance dip is due to reflection from the metal film and a strong toroidal dipole response. Our work provides an alternative and simple way to obtain high-performance asymmetric transmission devices.
ISSN:2079-4991