On the harmonic index of graph operations

‎The harmonic index of a connected graph G ‎, ‎denoted by H(G) ‎, ‎is‎ ‎defined as H(G)=∑ uv∈E(G) 2d u +d v ‎ ‎where d v is the degree of a vertex v in G‎. ‎In this paper‎, ‎expressions for the Harary indices of the‎ ‎join‎, ‎corona product‎, ‎Cartesian product‎, ‎composition and symmetric diff...

Full description

Bibliographic Details
Main Authors: B. Shwetha Shetty, V. Lokesha, P. S. Ranjini
Format: Article
Language:English
Published: University of Isfahan 2015-12-01
Series:Transactions on Combinatorics
Subjects:
Online Access:http://www.combinatorics.ir/pdf_7389_3e9ec295be34a42ee71a0570cc2fbfa9.html
Description
Summary:‎The harmonic index of a connected graph G ‎, ‎denoted by H(G) ‎, ‎is‎ ‎defined as H(G)=∑ uv∈E(G) 2d u +d v ‎ ‎where d v is the degree of a vertex v in G‎. ‎In this paper‎, ‎expressions for the Harary indices of the‎ ‎join‎, ‎corona product‎, ‎Cartesian product‎, ‎composition and symmetric difference of graphs are‎ ‎derived‎.
ISSN:2251-8657
2251-8665