An Analysis of Research on Membrane-Coated Electrodes in the 2001–2019 Period: Potential Application to CO<sub>2</sub> Capture and Utilization

The chemistry and electrochemistry basic fields have been active for the last two decades of the past century studying how the modification of the electrodes’ surface by coating with conductive thin films enhances their electrocatalytic activity and sensitivity. In light of the development of altern...

Full description

Bibliographic Details
Main Authors: Clara Casado-Coterillo, Aitor Marcos-Madrazo, Aurora Garea, Ángel Irabien
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/10/11/1226
Description
Summary:The chemistry and electrochemistry basic fields have been active for the last two decades of the past century studying how the modification of the electrodes’ surface by coating with conductive thin films enhances their electrocatalytic activity and sensitivity. In light of the development of alternative sustainable ways of energy storage and carbon dioxide conversion by electrochemical reduction, these research studies are starting to jump into the 21st century to more applied fields such as chemical engineering, energy and environmental science, and engineering. The huge amount of literature on experimental works dealing with the development of CO<sub>2</sub> electroreduction processes addresses electrocatalyst development and reactor configurations. Membranes can help with understanding and controlling the mass transport limitations of current electrodes as well as leading to novel reactor designs. The present work makes use of a bibliometric analysis directed to the papers published in the 21st century on membrane-coated electrodes and electrocatalysts to enhance the electrochemical reactor performance and their potential in the urgent issue of carbon dioxide capture and utilization.
ISSN:2073-4344