Gas Pipeline Response to Underlying Straight-Wall Arch Tunnel Construction

Straight-wall arch cross-sections are usually designed at the entrance and exit tunnels of subway stations, and dense underground pipelines often cross these cross-sections at close range. Among these pipelines, gas pipelines have the highest risk level. Therefore, it is necessary to reduce the defo...

Full description

Bibliographic Details
Main Authors: Xu Zhang, Chiyu Liang, Shimin Huang, Youjun Xu
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/13/10/2661
Description
Summary:Straight-wall arch cross-sections are usually designed at the entrance and exit tunnels of subway stations, and dense underground pipelines often cross these cross-sections at close range. Among these pipelines, gas pipelines have the highest risk level. Therefore, it is necessary to reduce the deformation influence of underground crossing construction on existing gas pipelines. Based on the No. 2 entrance and exit tunnel project of Zhongshan Road Station of the Hohhot Metro Line 2, using the methods of numerical simulation and field monitoring, this paper has particularly investigated the influence of straight-wall arch tunnel construction by applying the pre-grouting reinforcement and double-side drift method to the deformation of existing gas pipelines. The research results show that the double-side drift method is an efficient and sustainable construction method for straight-wall arch tunnels, which can effectively reduce the crossing construction disturbance to overlying gas pipelines. The measured maximum settlement of the existing gas pipeline is 18.46 mm, and the maximum settlement of the new tunnel vault is 22.86 mm, with both values satisfying the requirements for deformation control. The simulation results are consistent with the measured results of gas pipeline settlement. This study shows that the safety control scheme employed in the field with a tunnel excavation step of 6 m, stratum reinforcement with upper semi-section grouting, and a grouting reinforcement range of 2.0 m is reasonable and effective. This scheme can provide a reference for the deformation control of similar underground gas pipelines in the crossing construction of straight-wall arch tunnels at close range.
ISSN:2075-5309