Adding the X‐ray Bragg reflection physical process in crystal to the Geant4 Monte Carlo simulation toolkit, part I: reflection from a crystal slab

Abstract X‐ray diffraction from a solid crystal shows the wave nature of photons. It is an important electromagnetic (EM) physics process when X‐ray photons interact with a crystal. Bragg diffraction, often called Bragg reflection, is a special case of the general form of X‐ray diffraction, known as...

Full description

Bibliographic Details
Main Authors: Fada Guan, Makoto Asai, Dirk A. Bartkoski, Michael Kleckner, Ze'ev Harel, Mohammad Salehpour
Format: Article
Language:English
Published: Wiley 2023-03-01
Series:Precision Radiation Oncology
Subjects:
Online Access:https://doi.org/10.1002/pro6.1188
Description
Summary:Abstract X‐ray diffraction from a solid crystal shows the wave nature of photons. It is an important electromagnetic (EM) physics process when X‐ray photons interact with a crystal. Bragg diffraction, often called Bragg reflection, is a special case of the general form of X‐ray diffraction, known as Laue diffraction. When the Bragg's law is met, the incident photon beam is reflected from the crystal plane behaving as a specular reflection at the Bragg angle. However, the Bragg reflection physical process has not been integrated into the general‐purpose Monte Carlo simulation toolkit Geant4 for particle physics. In the current study, we developed a new EM physical process class “G4CrystalBraggReflection” and a new EM physical model class “G4DarwinDynamicalModel” for modeling the Bragg reflection physical process within a crystal. We added the Bragg reflection physical process to the EM physics category of Geant4. The preliminary results of photon tracking in a silicon crystal slab have shown the feasibility of simulating the Bragg reflection process in addition to the standard EM processes in the framework of Geant4.
ISSN:2398-7324