DO<sub>3</sub>SE modelling of soil moisture to determine ozone flux to forest trees
The DO<sub>3</sub>SE (Deposition of O<sub>3</sub> for Stomatal Exchange) model is an established tool for estimating ozone (O<sub>3</sub>) deposition, stomatal flux and impacts to a variety of vegetation types across Europe. It has been embedded within the EMEP (E...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2012-06-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | http://www.atmos-chem-phys.net/12/5537/2012/acp-12-5537-2012.pdf |
_version_ | 1818553852796862464 |
---|---|
author | M. Schaub L. Rhea J. Peñuelas R. Ogaya A. Nunn F. Lagergren R. Matyssek J. King P. E. Karlsson N. Grulke M. Baumgarten S. Barth J.-P. Tuovinen R. Alonso D. Simpson R. Falk A. Briolat T. Morrissey P. Büker J. Uddling W. Werner L. D. Emberson |
author_facet | M. Schaub L. Rhea J. Peñuelas R. Ogaya A. Nunn F. Lagergren R. Matyssek J. King P. E. Karlsson N. Grulke M. Baumgarten S. Barth J.-P. Tuovinen R. Alonso D. Simpson R. Falk A. Briolat T. Morrissey P. Büker J. Uddling W. Werner L. D. Emberson |
author_sort | M. Schaub |
collection | DOAJ |
description | The DO<sub>3</sub>SE (Deposition of O<sub>3</sub> for Stomatal Exchange) model is an established tool for estimating ozone (O<sub>3</sub>) deposition, stomatal flux and impacts to a variety of vegetation types across Europe. It has been embedded within the EMEP (European Monitoring and Evaluation Programme) photochemical model to provide a policy tool capable of relating the flux-based risk of vegetation damage to O<sub>3</sub> precursor emission scenarios for use in policy formulation. A key limitation of regional flux-based risk assessments has been the assumption that soil water deficits are not limiting O<sub>3</sub> flux due to the unavailability of evaluated methods for modelling soil water deficits and their influence on stomatal conductance (<i>g</i><sub>sto</sub>), and subsequent O<sub>3</sub> flux. <br></br> This paper describes the development and evaluation of a method to estimate soil moisture status and its influence on <i>g</i><sub>sto</sub> for a variety of forest tree species. This DO<sub>3</sub>SE soil moisture module uses the Penman-Monteith energy balance method to drive water cycling through the soil-plant-atmosphere system and empirical data describing <i>g</i><sub>sto</sub> relationships with pre-dawn leaf water status to estimate the biological control of transpiration. We trial four different methods to estimate this biological control of the transpiration stream, which vary from simple methods that relate soil water content or potential directly to <i>g</i><sub>sto</sub>, to more complex methods that incorporate hydraulic resistance and plant capacitance that control water flow through the plant system. <br></br> These methods are evaluated against field data describing a variety of soil water variables, <i>g</i><sub>sto</sub> and transpiration data for Norway spruce (<i>Picea abies</i>), Scots pine (<i>Pinus sylvestris</i>), birch (<i>Betula pendula</i>), aspen (<i>Populus tremuloides</i>), beech (<i>Fagus sylvatica</i>) and holm oak (<i>Quercus ilex</i>) collected from ten sites across Europe and North America. Modelled estimates of these variables show consistency with observed data when applying the simple empirical methods, with the timing and magnitude of soil drying events being captured well across all sites and reductions in transpiration with the onset of drought being predicted with reasonable accuracy. The more complex methods, which incorporate hydraulic resistance and plant capacitance, perform less well, with predicted drying cycles consistently underestimating the rate and magnitude of water loss from the soil. <br></br> A sensitivity analysis showed that model performance was strongly dependent upon the local parameterisation of key model drivers such as the maximum <i>g</i><sub>sto</sub>, soil texture, root depth and leaf area index. The results suggest that the simple modelling methods that relate <i>g</i><sub>sto</sub> directly to soil water content and potential provide adequate estimates of soil moisture and influence on <i>g</i><sub>sto</sub> such that they are suitable to be used to assess the potential risk posed by O<sub>3</sub> to forest trees across Europe. |
first_indexed | 2024-12-12T09:31:14Z |
format | Article |
id | doaj.art-a86d4c36d42b4ac780a53c9372e6b596 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-12T09:31:14Z |
publishDate | 2012-06-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-a86d4c36d42b4ac780a53c9372e6b5962022-12-22T00:28:52ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242012-06-0112125537556210.5194/acp-12-5537-2012DO<sub>3</sub>SE modelling of soil moisture to determine ozone flux to forest treesM. SchaubL. RheaJ. PeñuelasR. OgayaA. NunnF. LagergrenR. MatyssekJ. KingP. E. KarlssonN. GrulkeM. BaumgartenS. BarthJ.-P. TuovinenR. AlonsoD. SimpsonR. FalkA. BriolatT. MorrisseyP. BükerJ. UddlingW. WernerL. D. EmbersonThe DO<sub>3</sub>SE (Deposition of O<sub>3</sub> for Stomatal Exchange) model is an established tool for estimating ozone (O<sub>3</sub>) deposition, stomatal flux and impacts to a variety of vegetation types across Europe. It has been embedded within the EMEP (European Monitoring and Evaluation Programme) photochemical model to provide a policy tool capable of relating the flux-based risk of vegetation damage to O<sub>3</sub> precursor emission scenarios for use in policy formulation. A key limitation of regional flux-based risk assessments has been the assumption that soil water deficits are not limiting O<sub>3</sub> flux due to the unavailability of evaluated methods for modelling soil water deficits and their influence on stomatal conductance (<i>g</i><sub>sto</sub>), and subsequent O<sub>3</sub> flux. <br></br> This paper describes the development and evaluation of a method to estimate soil moisture status and its influence on <i>g</i><sub>sto</sub> for a variety of forest tree species. This DO<sub>3</sub>SE soil moisture module uses the Penman-Monteith energy balance method to drive water cycling through the soil-plant-atmosphere system and empirical data describing <i>g</i><sub>sto</sub> relationships with pre-dawn leaf water status to estimate the biological control of transpiration. We trial four different methods to estimate this biological control of the transpiration stream, which vary from simple methods that relate soil water content or potential directly to <i>g</i><sub>sto</sub>, to more complex methods that incorporate hydraulic resistance and plant capacitance that control water flow through the plant system. <br></br> These methods are evaluated against field data describing a variety of soil water variables, <i>g</i><sub>sto</sub> and transpiration data for Norway spruce (<i>Picea abies</i>), Scots pine (<i>Pinus sylvestris</i>), birch (<i>Betula pendula</i>), aspen (<i>Populus tremuloides</i>), beech (<i>Fagus sylvatica</i>) and holm oak (<i>Quercus ilex</i>) collected from ten sites across Europe and North America. Modelled estimates of these variables show consistency with observed data when applying the simple empirical methods, with the timing and magnitude of soil drying events being captured well across all sites and reductions in transpiration with the onset of drought being predicted with reasonable accuracy. The more complex methods, which incorporate hydraulic resistance and plant capacitance, perform less well, with predicted drying cycles consistently underestimating the rate and magnitude of water loss from the soil. <br></br> A sensitivity analysis showed that model performance was strongly dependent upon the local parameterisation of key model drivers such as the maximum <i>g</i><sub>sto</sub>, soil texture, root depth and leaf area index. The results suggest that the simple modelling methods that relate <i>g</i><sub>sto</sub> directly to soil water content and potential provide adequate estimates of soil moisture and influence on <i>g</i><sub>sto</sub> such that they are suitable to be used to assess the potential risk posed by O<sub>3</sub> to forest trees across Europe.http://www.atmos-chem-phys.net/12/5537/2012/acp-12-5537-2012.pdf |
spellingShingle | M. Schaub L. Rhea J. Peñuelas R. Ogaya A. Nunn F. Lagergren R. Matyssek J. King P. E. Karlsson N. Grulke M. Baumgarten S. Barth J.-P. Tuovinen R. Alonso D. Simpson R. Falk A. Briolat T. Morrissey P. Büker J. Uddling W. Werner L. D. Emberson DO<sub>3</sub>SE modelling of soil moisture to determine ozone flux to forest trees Atmospheric Chemistry and Physics |
title | DO<sub>3</sub>SE modelling of soil moisture to determine ozone flux to forest trees |
title_full | DO<sub>3</sub>SE modelling of soil moisture to determine ozone flux to forest trees |
title_fullStr | DO<sub>3</sub>SE modelling of soil moisture to determine ozone flux to forest trees |
title_full_unstemmed | DO<sub>3</sub>SE modelling of soil moisture to determine ozone flux to forest trees |
title_short | DO<sub>3</sub>SE modelling of soil moisture to determine ozone flux to forest trees |
title_sort | do sub 3 sub se modelling of soil moisture to determine ozone flux to forest trees |
url | http://www.atmos-chem-phys.net/12/5537/2012/acp-12-5537-2012.pdf |
work_keys_str_mv | AT mschaub dosub3subsemodellingofsoilmoisturetodetermineozonefluxtoforesttrees AT lrhea dosub3subsemodellingofsoilmoisturetodetermineozonefluxtoforesttrees AT jpenuelas dosub3subsemodellingofsoilmoisturetodetermineozonefluxtoforesttrees AT rogaya dosub3subsemodellingofsoilmoisturetodetermineozonefluxtoforesttrees AT anunn dosub3subsemodellingofsoilmoisturetodetermineozonefluxtoforesttrees AT flagergren dosub3subsemodellingofsoilmoisturetodetermineozonefluxtoforesttrees AT rmatyssek dosub3subsemodellingofsoilmoisturetodetermineozonefluxtoforesttrees AT jking dosub3subsemodellingofsoilmoisturetodetermineozonefluxtoforesttrees AT pekarlsson dosub3subsemodellingofsoilmoisturetodetermineozonefluxtoforesttrees AT ngrulke dosub3subsemodellingofsoilmoisturetodetermineozonefluxtoforesttrees AT mbaumgarten dosub3subsemodellingofsoilmoisturetodetermineozonefluxtoforesttrees AT sbarth dosub3subsemodellingofsoilmoisturetodetermineozonefluxtoforesttrees AT jptuovinen dosub3subsemodellingofsoilmoisturetodetermineozonefluxtoforesttrees AT ralonso dosub3subsemodellingofsoilmoisturetodetermineozonefluxtoforesttrees AT dsimpson dosub3subsemodellingofsoilmoisturetodetermineozonefluxtoforesttrees AT rfalk dosub3subsemodellingofsoilmoisturetodetermineozonefluxtoforesttrees AT abriolat dosub3subsemodellingofsoilmoisturetodetermineozonefluxtoforesttrees AT tmorrissey dosub3subsemodellingofsoilmoisturetodetermineozonefluxtoforesttrees AT pbuker dosub3subsemodellingofsoilmoisturetodetermineozonefluxtoforesttrees AT juddling dosub3subsemodellingofsoilmoisturetodetermineozonefluxtoforesttrees AT wwerner dosub3subsemodellingofsoilmoisturetodetermineozonefluxtoforesttrees AT ldemberson dosub3subsemodellingofsoilmoisturetodetermineozonefluxtoforesttrees |