Metal Ion-Based Supramolecular Self-Assembly for Cancer Theranostics

Metal-ion-based self-assembly supramolecular theranostics exhibit excellent performance in biomedical applications owing to their potential superiorities for simultaneous precise diagnosis, targeted drug delivery, and monitoring the response to therapy in real-time. Specially, the rational designed...

Full description

Bibliographic Details
Main Authors: Bing Chen, Chengchao Chu, En Ren, Huirong Lin, Yang Zhang, Peiyu Wang, Hong Yao, Ailin Liu, Gang Liu, Xinhua Lin
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-05-01
Series:Frontiers in Chemistry
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fchem.2022.870769/full
Description
Summary:Metal-ion-based self-assembly supramolecular theranostics exhibit excellent performance in biomedical applications owing to their potential superiorities for simultaneous precise diagnosis, targeted drug delivery, and monitoring the response to therapy in real-time. Specially, the rational designed systems could achieve specific in vivo self-assembly through complexation or ionic interaction to improve tissue-specific accumulation, penetration, and cell internalization, thereby reducing toxicities of drugs in diagnostics and therapy. Furthermore, such imaging traceable nanosystems could provide real-timely information of drug accumulation and therapeutic effects in a non-invasive and safe manner. Herein, the article highlights the recent prominent applications based on the metal ions self-assembly in cancer treatment. This strategy may open up new research directions to develop novel drug delivery systems for cancer theranostics.
ISSN:2296-2646