Summary: | The International Space Station (ISS) Water Processor Assembly (WPA) experiences intermittent dormancy in the WPA wastewater tank during water recycling events which promotes biofilm formation within the system. In this work we aimed to gain a deeper understanding of the impact of nutrient limitation on bacterial growth and biofilm formation under microgravity in support of biofilm mitigation efforts in exploration water recovery systems. A representative species of bacteria that is commonly cultured from the ISS WPA was cultured in an WPA influent water ersatz formulation tailored for microbiological studies. An isolate of Burkholderia contaminans was cultured under a simulated microgravity (SμG) treatment in a vertically rotating high-aspect rotating vessel (HARV) to create the low shear modeled microgravity (LSMMG) environment on a rotating wall vessel (RWV), with a rotating control (R) in the horizontal plane at the predetermined optimal rotation per minute (rpm) speed of 20. Over the course of the growth curve, the bacterial culture in ersatz media was harvested for bacterial counts, and transcriptomic and nutrient content analyses. The cultures under SμG treatment showed a transcriptomic signature indicative of nutrient stress and biofilm formation as compared to the R control treatment. Further analysis of the WPA ersatz over the course of the growth curve suggests that the essential nutrients of the media were consumed faster in the early stages of growth for the SμG treatment and thus approached a nutrient limited growth condition earlier than in the R control culture. The observed limited nutrient response may serve as one element to explain a moderate enhancement of adherent biofilm formation in the SμG treatment after 24 h. While nutrients levels can be modulated, one implication of this investigation is that biofilm mitigation in the ISS environment could benefit from methods such as mixing or the maintenance of minimum flow within a dormant water system in order to force convection and offset the response of microbes to the secondary effects of microgravity.
|