Investigation of the Warpage of a High-Density Polyethylene Pallet by Plastic Injection Compression Molding: Part I—Numerical Approach

Many challenges are associated with the injection compression molding process for producing a half-pallet (1320 mm × 1110 mm × 75 mm, length × width × height), which is butt-welded to another one for enhancing its strength. This pooled high-density polyethylene (HDPE) pallet is able to endure the im...

Full description

Bibliographic Details
Main Authors: Chun-Der Cheng, Yi-Ling Liao, Hsi-Hsun Tsai
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/14/7/1437
Description
Summary:Many challenges are associated with the injection compression molding process for producing a half-pallet (1320 mm × 1110 mm × 75 mm, length × width × height), which is butt-welded to another one for enhancing its strength. This pooled high-density polyethylene (HDPE) pallet is able to endure the impacts of a heavy load and a low ambient temperature. Reducing the warpage of a half-pallet is, therefore, essential for reducing the residual internal stress within the welded portions. An advanced Moldex3D package helps to detail the temperature distribution and warpage of a half-pallet. The pre-setting molding parameters from a mass-production factory produce half-pallets with worse flatness. In this investigation on using appropriate cooling water temperatures within the core and cavity plates of the mold, the numerical results show that the warpage of the top surface of the half-pallet was 11.549 mm, low warpage with respect to this large-scale pallet. Furthermore, the compression speed of 50–60 mm/s may have produced a low flatness of the half-pallet in this study.
ISSN:2073-4360