Computational topology for approximations of knots

The preservation of ambient isotopic equivalence under piecewise linear (PL) approximation for smooth knots are prominent in molecular modeling and simulation. Sufficient conditions are given regarding: • Hausdorff distance, and • a sum of total curvature and derivative. High degree Bézier curves a...

Full description

Bibliographic Details
Main Authors: Ji Li, T. J. Peters, K. E. Jordan
Format: Article
Language:English
Published: Universitat Politècnica de València 2014-10-01
Series:Applied General Topology
Subjects:
Online Access:http://polipapers.upv.es/index.php/AGT/article/view/2281
_version_ 1818245452403834880
author Ji Li
T. J. Peters
K. E. Jordan
author_facet Ji Li
T. J. Peters
K. E. Jordan
author_sort Ji Li
collection DOAJ
description The preservation of ambient isotopic equivalence under piecewise linear (PL) approximation for smooth knots are prominent in molecular modeling and simulation. Sufficient conditions are given regarding: • Hausdorff distance, and • a sum of total curvature and derivative. High degree Bézier curves are often used as smooth representations, where computational efficiency is a practical concern. Subdivision can produce PL approximations for a given B\'ezier curve, fulfilling the above two conditions. The primary contributions are:        (i) a priori bounds on the number of subdivision iterations sufficient to achieve a PL approximation that is ambient isotopic to the original B\'ezier curve, and        (ii) improved iteration bounds over those previously established.
first_indexed 2024-12-12T14:33:08Z
format Article
id doaj.art-a89dbdcf12b44cf49fccd1f6f412e5f7
institution Directory Open Access Journal
issn 1576-9402
1989-4147
language English
last_indexed 2024-12-12T14:33:08Z
publishDate 2014-10-01
publisher Universitat Politècnica de València
record_format Article
series Applied General Topology
spelling doaj.art-a89dbdcf12b44cf49fccd1f6f412e5f72022-12-22T00:21:27ZengUniversitat Politècnica de ValènciaApplied General Topology1576-94021989-41472014-10-0115220322010.4995/agt.2014.22811793Computational topology for approximations of knotsJi Li0T. J. Peters1K. E. Jordan2University of ConnecticutUniversity of ConnecticutCambridge Research CenterThe preservation of ambient isotopic equivalence under piecewise linear (PL) approximation for smooth knots are prominent in molecular modeling and simulation. Sufficient conditions are given regarding: • Hausdorff distance, and • a sum of total curvature and derivative. High degree Bézier curves are often used as smooth representations, where computational efficiency is a practical concern. Subdivision can produce PL approximations for a given B\'ezier curve, fulfilling the above two conditions. The primary contributions are:        (i) a priori bounds on the number of subdivision iterations sufficient to achieve a PL approximation that is ambient isotopic to the original B\'ezier curve, and        (ii) improved iteration bounds over those previously established.http://polipapers.upv.es/index.php/AGT/article/view/2281Knot approximationambient isotopyBézier curvesubdivisionpiecewise linear approximation.
spellingShingle Ji Li
T. J. Peters
K. E. Jordan
Computational topology for approximations of knots
Applied General Topology
Knot approximation
ambient isotopy
Bézier curve
subdivision
piecewise linear approximation.
title Computational topology for approximations of knots
title_full Computational topology for approximations of knots
title_fullStr Computational topology for approximations of knots
title_full_unstemmed Computational topology for approximations of knots
title_short Computational topology for approximations of knots
title_sort computational topology for approximations of knots
topic Knot approximation
ambient isotopy
Bézier curve
subdivision
piecewise linear approximation.
url http://polipapers.upv.es/index.php/AGT/article/view/2281
work_keys_str_mv AT jili computationaltopologyforapproximationsofknots
AT tjpeters computationaltopologyforapproximationsofknots
AT kejordan computationaltopologyforapproximationsofknots