Drag Reduction in Polymer-Laden Turbulent Pipe Flow

The turbulence of a realistic dilute solution of DNA macromolecules is investigated through a hybrid Eulerian–Lagrangian approach that directly solves the incompressible Navier–Stokes equation alongside the evolution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML&qu...

Full description

Bibliographic Details
Main Authors: Francesco Serafini, Francesco Battista, Paolo Gualtieri, Carlo Massimo Casciola
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Fluids
Subjects:
Online Access:https://www.mdpi.com/2311-5521/7/11/355
_version_ 1797465319466336256
author Francesco Serafini
Francesco Battista
Paolo Gualtieri
Carlo Massimo Casciola
author_facet Francesco Serafini
Francesco Battista
Paolo Gualtieri
Carlo Massimo Casciola
author_sort Francesco Serafini
collection DOAJ
description The turbulence of a realistic dilute solution of DNA macromolecules is investigated through a hybrid Eulerian–Lagrangian approach that directly solves the incompressible Navier–Stokes equation alongside the evolution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>8</mn></msup></semantics></math></inline-formula> polymers, modelled as finitely extensible nonlinear elastic (FENE) dumbbells. At a friction Reynolds number of 320 and a Weissenberg number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>4</mn></msup></mrow></semantics></math></inline-formula>, the drag reduction is equal to 26%, which is similar to the one obtained at the lower Reynolds number of 180. The polymers induce an increase in the flow rate and the turbulent kinetic energy, whose axial contribution is predominantly augmented. The stress balance is analysed to investigate the causes of the drag reduction and eventually the effect of the friction Reynolds number on the probability distribution of the polymer configuration. Near the wall, the majority of the polymers are fully stretched and aligned along the streamwise direction, inducing an increase in the turbulence anisotropy.
first_indexed 2024-03-09T18:20:51Z
format Article
id doaj.art-a89e19d1dae84585a6200e7485757dcd
institution Directory Open Access Journal
issn 2311-5521
language English
last_indexed 2024-03-09T18:20:51Z
publishDate 2022-11-01
publisher MDPI AG
record_format Article
series Fluids
spelling doaj.art-a89e19d1dae84585a6200e7485757dcd2023-11-24T08:20:19ZengMDPI AGFluids2311-55212022-11-0171135510.3390/fluids7110355Drag Reduction in Polymer-Laden Turbulent Pipe FlowFrancesco Serafini0Francesco Battista1Paolo Gualtieri2Carlo Massimo Casciola3Department of Mechanical and Aerospace Engineering, Sapienza University, Via Eudossiana 18, 00184 Rome, ItalyDepartment of Mechanical and Aerospace Engineering, Sapienza University, Via Eudossiana 18, 00184 Rome, ItalyDepartment of Mechanical and Aerospace Engineering, Sapienza University, Via Eudossiana 18, 00184 Rome, ItalyDepartment of Mechanical and Aerospace Engineering, Sapienza University, Via Eudossiana 18, 00184 Rome, ItalyThe turbulence of a realistic dilute solution of DNA macromolecules is investigated through a hybrid Eulerian–Lagrangian approach that directly solves the incompressible Navier–Stokes equation alongside the evolution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>8</mn></msup></semantics></math></inline-formula> polymers, modelled as finitely extensible nonlinear elastic (FENE) dumbbells. At a friction Reynolds number of 320 and a Weissenberg number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>4</mn></msup></mrow></semantics></math></inline-formula>, the drag reduction is equal to 26%, which is similar to the one obtained at the lower Reynolds number of 180. The polymers induce an increase in the flow rate and the turbulent kinetic energy, whose axial contribution is predominantly augmented. The stress balance is analysed to investigate the causes of the drag reduction and eventually the effect of the friction Reynolds number on the probability distribution of the polymer configuration. Near the wall, the majority of the polymers are fully stretched and aligned along the streamwise direction, inducing an increase in the turbulence anisotropy.https://www.mdpi.com/2311-5521/7/11/355turbulencepolymer dynamicsviscoelastic flows
spellingShingle Francesco Serafini
Francesco Battista
Paolo Gualtieri
Carlo Massimo Casciola
Drag Reduction in Polymer-Laden Turbulent Pipe Flow
Fluids
turbulence
polymer dynamics
viscoelastic flows
title Drag Reduction in Polymer-Laden Turbulent Pipe Flow
title_full Drag Reduction in Polymer-Laden Turbulent Pipe Flow
title_fullStr Drag Reduction in Polymer-Laden Turbulent Pipe Flow
title_full_unstemmed Drag Reduction in Polymer-Laden Turbulent Pipe Flow
title_short Drag Reduction in Polymer-Laden Turbulent Pipe Flow
title_sort drag reduction in polymer laden turbulent pipe flow
topic turbulence
polymer dynamics
viscoelastic flows
url https://www.mdpi.com/2311-5521/7/11/355
work_keys_str_mv AT francescoserafini dragreductioninpolymerladenturbulentpipeflow
AT francescobattista dragreductioninpolymerladenturbulentpipeflow
AT paologualtieri dragreductioninpolymerladenturbulentpipeflow
AT carlomassimocasciola dragreductioninpolymerladenturbulentpipeflow