Quality control of photosystem II: lipid peroxidation accelerates photoinhibition under excessive illumination.
Environmental stresses lower the efficiency of photosynthesis and sometimes cause irreversible damage to plant functions. When spinach thylakoids and Photosystem II membranes were illuminated with excessive visible light (100-1,000 µmol photons m(-1) s(-1)) for 10 min at either 20°C or 30°C, the opt...
Main Authors: | , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2012-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3531424?pdf=render |
_version_ | 1818358645817081856 |
---|---|
author | Tiffanie Chan Yurika Shimizu Pavel Pospíšil Nobuyoshi Nijo Anna Fujiwara Yoshito Taninaka Tomomi Ishikawa Haruka Hori Daisuke Nanba Aya Imai Noriko Morita Miho Yoshioka-Nishimura Yohei Izumi Yoko Yamamoto Hideki Kobayashi Naoki Mizusawa Hajime Wada Yasusi Yamamoto |
author_facet | Tiffanie Chan Yurika Shimizu Pavel Pospíšil Nobuyoshi Nijo Anna Fujiwara Yoshito Taninaka Tomomi Ishikawa Haruka Hori Daisuke Nanba Aya Imai Noriko Morita Miho Yoshioka-Nishimura Yohei Izumi Yoko Yamamoto Hideki Kobayashi Naoki Mizusawa Hajime Wada Yasusi Yamamoto |
author_sort | Tiffanie Chan |
collection | DOAJ |
description | Environmental stresses lower the efficiency of photosynthesis and sometimes cause irreversible damage to plant functions. When spinach thylakoids and Photosystem II membranes were illuminated with excessive visible light (100-1,000 µmol photons m(-1) s(-1)) for 10 min at either 20°C or 30°C, the optimum quantum yield of Photosystem II decreased as the light intensity and temperature increased. Reactive oxygen species and endogenous cationic radicals produced through a photochemical reaction at and/or near the reaction center have been implicated in the damage to the D1 protein. Here we present evidence that lipid peroxidation induced by the illumination is involved in the damage to the D1 protein and the subunits of the light-harvesting complex of Photosystem II. This is reasoned from the results that considerable lipid peroxidation occurred in the thylakoids in the light, and that lipoxygenase externally added in the dark induced inhibition of Photosystem II activity in the thylakoids, production of singlet oxygen, which was monitored by electron paramagnetic resonance spin trapping, and damage to the D1 protein, in parallel with lipid peroxidation. Modification of the subunits of the light-harvesting complex of Photosystem II by malondialdehyde as well as oxidation of the subunits was also observed. We suggest that mainly singlet oxygen formed through lipid peroxidation under light stress participates in damaging the Photosystem II subunits. |
first_indexed | 2024-12-13T20:32:18Z |
format | Article |
id | doaj.art-a8ac6733084945d28a7baefa15569f8b |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-13T20:32:18Z |
publishDate | 2012-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-a8ac6733084945d28a7baefa15569f8b2022-12-21T23:32:24ZengPublic Library of Science (PLoS)PLoS ONE1932-62032012-01-01712e5210010.1371/journal.pone.0052100Quality control of photosystem II: lipid peroxidation accelerates photoinhibition under excessive illumination.Tiffanie ChanYurika ShimizuPavel PospíšilNobuyoshi NijoAnna FujiwaraYoshito TaninakaTomomi IshikawaHaruka HoriDaisuke NanbaAya ImaiNoriko MoritaMiho Yoshioka-NishimuraYohei IzumiYoko YamamotoHideki KobayashiNaoki MizusawaHajime WadaYasusi YamamotoEnvironmental stresses lower the efficiency of photosynthesis and sometimes cause irreversible damage to plant functions. When spinach thylakoids and Photosystem II membranes were illuminated with excessive visible light (100-1,000 µmol photons m(-1) s(-1)) for 10 min at either 20°C or 30°C, the optimum quantum yield of Photosystem II decreased as the light intensity and temperature increased. Reactive oxygen species and endogenous cationic radicals produced through a photochemical reaction at and/or near the reaction center have been implicated in the damage to the D1 protein. Here we present evidence that lipid peroxidation induced by the illumination is involved in the damage to the D1 protein and the subunits of the light-harvesting complex of Photosystem II. This is reasoned from the results that considerable lipid peroxidation occurred in the thylakoids in the light, and that lipoxygenase externally added in the dark induced inhibition of Photosystem II activity in the thylakoids, production of singlet oxygen, which was monitored by electron paramagnetic resonance spin trapping, and damage to the D1 protein, in parallel with lipid peroxidation. Modification of the subunits of the light-harvesting complex of Photosystem II by malondialdehyde as well as oxidation of the subunits was also observed. We suggest that mainly singlet oxygen formed through lipid peroxidation under light stress participates in damaging the Photosystem II subunits.http://europepmc.org/articles/PMC3531424?pdf=render |
spellingShingle | Tiffanie Chan Yurika Shimizu Pavel Pospíšil Nobuyoshi Nijo Anna Fujiwara Yoshito Taninaka Tomomi Ishikawa Haruka Hori Daisuke Nanba Aya Imai Noriko Morita Miho Yoshioka-Nishimura Yohei Izumi Yoko Yamamoto Hideki Kobayashi Naoki Mizusawa Hajime Wada Yasusi Yamamoto Quality control of photosystem II: lipid peroxidation accelerates photoinhibition under excessive illumination. PLoS ONE |
title | Quality control of photosystem II: lipid peroxidation accelerates photoinhibition under excessive illumination. |
title_full | Quality control of photosystem II: lipid peroxidation accelerates photoinhibition under excessive illumination. |
title_fullStr | Quality control of photosystem II: lipid peroxidation accelerates photoinhibition under excessive illumination. |
title_full_unstemmed | Quality control of photosystem II: lipid peroxidation accelerates photoinhibition under excessive illumination. |
title_short | Quality control of photosystem II: lipid peroxidation accelerates photoinhibition under excessive illumination. |
title_sort | quality control of photosystem ii lipid peroxidation accelerates photoinhibition under excessive illumination |
url | http://europepmc.org/articles/PMC3531424?pdf=render |
work_keys_str_mv | AT tiffaniechan qualitycontrolofphotosystemiilipidperoxidationacceleratesphotoinhibitionunderexcessiveillumination AT yurikashimizu qualitycontrolofphotosystemiilipidperoxidationacceleratesphotoinhibitionunderexcessiveillumination AT pavelpospisil qualitycontrolofphotosystemiilipidperoxidationacceleratesphotoinhibitionunderexcessiveillumination AT nobuyoshinijo qualitycontrolofphotosystemiilipidperoxidationacceleratesphotoinhibitionunderexcessiveillumination AT annafujiwara qualitycontrolofphotosystemiilipidperoxidationacceleratesphotoinhibitionunderexcessiveillumination AT yoshitotaninaka qualitycontrolofphotosystemiilipidperoxidationacceleratesphotoinhibitionunderexcessiveillumination AT tomomiishikawa qualitycontrolofphotosystemiilipidperoxidationacceleratesphotoinhibitionunderexcessiveillumination AT harukahori qualitycontrolofphotosystemiilipidperoxidationacceleratesphotoinhibitionunderexcessiveillumination AT daisukenanba qualitycontrolofphotosystemiilipidperoxidationacceleratesphotoinhibitionunderexcessiveillumination AT ayaimai qualitycontrolofphotosystemiilipidperoxidationacceleratesphotoinhibitionunderexcessiveillumination AT norikomorita qualitycontrolofphotosystemiilipidperoxidationacceleratesphotoinhibitionunderexcessiveillumination AT mihoyoshiokanishimura qualitycontrolofphotosystemiilipidperoxidationacceleratesphotoinhibitionunderexcessiveillumination AT yoheiizumi qualitycontrolofphotosystemiilipidperoxidationacceleratesphotoinhibitionunderexcessiveillumination AT yokoyamamoto qualitycontrolofphotosystemiilipidperoxidationacceleratesphotoinhibitionunderexcessiveillumination AT hidekikobayashi qualitycontrolofphotosystemiilipidperoxidationacceleratesphotoinhibitionunderexcessiveillumination AT naokimizusawa qualitycontrolofphotosystemiilipidperoxidationacceleratesphotoinhibitionunderexcessiveillumination AT hajimewada qualitycontrolofphotosystemiilipidperoxidationacceleratesphotoinhibitionunderexcessiveillumination AT yasusiyamamoto qualitycontrolofphotosystemiilipidperoxidationacceleratesphotoinhibitionunderexcessiveillumination |