Existence and boundary stabilization of a nonlinear hyperbolic equation with time-dependent coefficients

In this article, we study the hyperbolic problem $$ K(x,t)u_{tt} - sum_{j=1}^nleft(a(x,t)u_{x_j} ight) + F(x,t,u,abla u) = 0 $$ coupled with boundary conditions $$u=0,quadhbox{on }Gamma_1,, quad {partial u overpartialu} + Beta(x)u_t =0quadhbox{ on }Gamma_0,.$$ Here the variable $x$ belongs to a boun...

Full description

Bibliographic Details
Main Authors: Marcelo M. Cavalcanti, V. N. Domingos Cavalcanti, Juan A. Soriano
Format: Article
Language:English
Published: Texas State University 1998-03-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/1998/08/abstr.html
_version_ 1818393966727397376
author Marcelo M. Cavalcanti
V. N. Domingos Cavalcanti
Juan A. Soriano
author_facet Marcelo M. Cavalcanti
V. N. Domingos Cavalcanti
Juan A. Soriano
author_sort Marcelo M. Cavalcanti
collection DOAJ
description In this article, we study the hyperbolic problem $$ K(x,t)u_{tt} - sum_{j=1}^nleft(a(x,t)u_{x_j} ight) + F(x,t,u,abla u) = 0 $$ coupled with boundary conditions $$u=0,quadhbox{on }Gamma_1,, quad {partial u overpartialu} + Beta(x)u_t =0quadhbox{ on }Gamma_0,.$$ Here the variable $x$ belongs to a bounded region of ${Bbb R}^n$, whose boundary is partitioned into two disjoint sets $Gamma_0,Gamma_1$.
first_indexed 2024-12-14T05:53:43Z
format Article
id doaj.art-a8b8197cf0c7426088db7cff3d9d8a62
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-14T05:53:43Z
publishDate 1998-03-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-a8b8197cf0c7426088db7cff3d9d8a622022-12-21T23:14:39ZengTexas State UniversityElectronic Journal of Differential Equations1072-66911998-03-01199808121Existence and boundary stabilization of a nonlinear hyperbolic equation with time-dependent coefficientsMarcelo M. CavalcantiV. N. Domingos CavalcantiJuan A. SorianoIn this article, we study the hyperbolic problem $$ K(x,t)u_{tt} - sum_{j=1}^nleft(a(x,t)u_{x_j} ight) + F(x,t,u,abla u) = 0 $$ coupled with boundary conditions $$u=0,quadhbox{on }Gamma_1,, quad {partial u overpartialu} + Beta(x)u_t =0quadhbox{ on }Gamma_0,.$$ Here the variable $x$ belongs to a bounded region of ${Bbb R}^n$, whose boundary is partitioned into two disjoint sets $Gamma_0,Gamma_1$.http://ejde.math.txstate.edu/Volumes/1998/08/abstr.htmlBoundary stabilizationasymptotic behaviour.
spellingShingle Marcelo M. Cavalcanti
V. N. Domingos Cavalcanti
Juan A. Soriano
Existence and boundary stabilization of a nonlinear hyperbolic equation with time-dependent coefficients
Electronic Journal of Differential Equations
Boundary stabilization
asymptotic behaviour.
title Existence and boundary stabilization of a nonlinear hyperbolic equation with time-dependent coefficients
title_full Existence and boundary stabilization of a nonlinear hyperbolic equation with time-dependent coefficients
title_fullStr Existence and boundary stabilization of a nonlinear hyperbolic equation with time-dependent coefficients
title_full_unstemmed Existence and boundary stabilization of a nonlinear hyperbolic equation with time-dependent coefficients
title_short Existence and boundary stabilization of a nonlinear hyperbolic equation with time-dependent coefficients
title_sort existence and boundary stabilization of a nonlinear hyperbolic equation with time dependent coefficients
topic Boundary stabilization
asymptotic behaviour.
url http://ejde.math.txstate.edu/Volumes/1998/08/abstr.html
work_keys_str_mv AT marcelomcavalcanti existenceandboundarystabilizationofanonlinearhyperbolicequationwithtimedependentcoefficients
AT vndomingoscavalcanti existenceandboundarystabilizationofanonlinearhyperbolicequationwithtimedependentcoefficients
AT juanasoriano existenceandboundarystabilizationofanonlinearhyperbolicequationwithtimedependentcoefficients